Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wicks, Joshua

  • Google
  • 3
  • 32
  • 1440

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022High-Rate and Selective CO2 Electrolysis to Ethylene via Metal–Organic-Framework-Augmented CO2 Availability109citations
  • 2020CO2 electrolysis to multicarbon products at activities greater than 1 A cm−21198citations
  • 2020High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer133citations

Places of action

Chart of shared publication
Sargent, Edward H.
3 / 21 shared
Nam, Dae-Hyun
2 / 3 shared
Shekhah, Osama
1 / 10 shared
Li, Fengwang
3 / 5 shared
Ozden, Adnan
3 / 3 shared
Li, Jun
2 / 19 shared
Johnston, Andrew
1 / 6 shared
Eddaoudi, Mohamed
1 / 3 shared
Sinton, David
3 / 4 shared
Mccallum, Christopher
2 / 2 shared
Lum, Yanwei
1 / 1 shared
Lee, Taemin
1 / 1 shared
Richter, Lee J.
1 / 5 shared
Arquer, F. Pelayo García De
1 / 4 shared
Thorpe, Steven J.
1 / 1 shared
Li, Yuguang C.
1 / 2 shared
Dinh, Cao-Thang
1 / 1 shared
Edwards, Jonathan
1 / 1 shared
Kirmani, Ahmad R.
1 / 1 shared
Gabardo, Christine
1 / 1 shared
Seifitokaldani, Ali
1 / 1 shared
Arquer, F. Pelayo Garcĺa De
1 / 1 shared
Rosas-Hernández, Alonso
1 / 1 shared
Wang, Xue
1 / 2 shared
Hung, Sung Fu
1 / 1 shared
Wang, Yuhang
1 / 1 shared
Thevenon, Arnaud
1 / 1 shared
Peters, Jonas C.
1 / 2 shared
Agapie, Theodor
1 / 2 shared
Chen, Bin
1 / 17 shared
Wang, Ziyun
1 / 1 shared
Luo, Mingchuan
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Sargent, Edward H.
  • Nam, Dae-Hyun
  • Shekhah, Osama
  • Li, Fengwang
  • Ozden, Adnan
  • Li, Jun
  • Johnston, Andrew
  • Eddaoudi, Mohamed
  • Sinton, David
  • Mccallum, Christopher
  • Lum, Yanwei
  • Lee, Taemin
  • Richter, Lee J.
  • Arquer, F. Pelayo García De
  • Thorpe, Steven J.
  • Li, Yuguang C.
  • Dinh, Cao-Thang
  • Edwards, Jonathan
  • Kirmani, Ahmad R.
  • Gabardo, Christine
  • Seifitokaldani, Ali
  • Arquer, F. Pelayo Garcĺa De
  • Rosas-Hernández, Alonso
  • Wang, Xue
  • Hung, Sung Fu
  • Wang, Yuhang
  • Thevenon, Arnaud
  • Peters, Jonas C.
  • Agapie, Theodor
  • Chen, Bin
  • Wang, Ziyun
  • Luo, Mingchuan
OrganizationsLocationPeople

article

High-Rate and Selective CO2 Electrolysis to Ethylene via Metal–Organic-Framework-Augmented CO2 Availability

  • Sargent, Edward H.
  • Nam, Dae-Hyun
  • Shekhah, Osama
  • Li, Fengwang
  • Ozden, Adnan
  • Li, Jun
  • Johnston, Andrew
  • Eddaoudi, Mohamed
  • Sinton, David
  • Wicks, Joshua
  • Mccallum, Christopher
  • Lum, Yanwei
  • Lee, Taemin
Abstract

High-rate conversion of carbon dioxide (CO<sub>2</sub>) to ethylene (C<sub>2</sub>H<sub>4</sub>) in the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) requires fine control over the phase boundary of the gas diffusion electrode (GDE) to overcome the limit of CO<sub>2</sub> solubility in aqueous electrolytes. Here, a metal–organic framework (MOF)-functionalized GDE design is presented, based on a catalysts:MOFs:hydrophobic substrate materials layered architecture, that leads to high-rate and selective C<sub>2</sub>H<sub>4</sub> production in flow cells and membrane electrode assembly (MEA) electrolyzers. It is found that using electroanalysis and operando X-ray absorption spectroscopy (XAS), MOF-induced organic layers in GDEs augment the local CO<sub>2</sub> concentration near the active sites of the Cu catalysts. MOFs with different CO<sub>2</sub> adsorption abilities are used, and the stacking ordering of MOFs in the GDE is varied. While sputtering Cu on poly(tetrafluoroethylene) (PTFE) (Cu/PTFE) exhibits 43% C<sub>2</sub>H<sub>4</sub> Faradaic efficiency (FE) at a current density of 200 mA cm<sup>−</sup><sup>2</sup> in a flow cell, 49% C<sub>2</sub>H<sub>4</sub> FE at 1 A cm<sup>−</sup><sup>2</sup> is achieved on MOF-augmented GDEs in CO<sub>2</sub>RR. MOF-augmented GDEs are further evaluated in an MEA electrolyzer, achieving a C<sub>2</sub>H<sub>4</sub> partial current density of 220 mA cm<sup>−2</sup> for CO<sub>2</sub>RR and 121 mA cm<sup>−2</sup> for the carbon monoxide reduction reaction (CORR), representing 2.7-fold and 15-fold improvement in C<sub>2</sub>H<sub>4</sub> production rate, compared to those obtained on bare Cu/PTFE.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • phase
  • layered
  • current density
  • x-ray absorption spectroscopy
  • phase boundary