Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohammadi, Mahdad

  • Google
  • 1
  • 7
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Tailoring Optical Properties in Transparent Highly Conducting Perovskites by Cationic Substitution16citations

Places of action

Chart of shared publication
Hadaeghi, Niloofar
1 / 1 shared
Alff, Lambert
1 / 11 shared
Komissinskiy, Philipp
1 / 9 shared
Xie, Ruiwen
1 / 2 shared
Zhang, Hongbin
1 / 10 shared
Radetinac, Aldin
1 / 5 shared
Arzumanov, Alexey
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hadaeghi, Niloofar
  • Alff, Lambert
  • Komissinskiy, Philipp
  • Xie, Ruiwen
  • Zhang, Hongbin
  • Radetinac, Aldin
  • Arzumanov, Alexey
OrganizationsLocationPeople

article

Tailoring Optical Properties in Transparent Highly Conducting Perovskites by Cationic Substitution

  • Hadaeghi, Niloofar
  • Alff, Lambert
  • Komissinskiy, Philipp
  • Xie, Ruiwen
  • Mohammadi, Mahdad
  • Zhang, Hongbin
  • Radetinac, Aldin
  • Arzumanov, Alexey
Abstract

<jats:title>Abstract</jats:title><jats:p>SrMoO<jats:sub>3</jats:sub> , SrNbO<jats:sub>3</jats:sub>, and SrVO<jats:sub>3</jats:sub> are remarkable highly conducting d<jats:sup>1</jats:sup> (V, Nb) or d<jats:sup>2</jats:sup> (Mo) perovskite metals with an intrinsically high transparency in the visible. A key scientific question is how the optical properties of these materials can be manipulated to make them suitable for applications as transparent electrodes and in plasmonics. Here, it is shown how 3d/4d cationic substitution in perovskites tailors the relevant materials parameters, i.e., optical transition energy and plasma frequency. With the example of the solid‐state solution SrV<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Mo<jats:italic><jats:sub>x</jats:sub></jats:italic>O<jats:sub>3</jats:sub>, it is shown that the absorption and reflection edges can be shifted to the edges of the visible light spectrum, resulting in a material that has the potential to outperform indium tin oxide (ITO) due to its extremely low sheet resistance. An optimum for <jats:italic>x</jats:italic> = 0.5, where a resistivity of 32 µΩ cm (≈12 Ω sq<jats:sup>−1</jats:sup>) is paired with a transmittance above 84% in the whole visible spectrum is found. Quantitative comparison between experiments and electronic structure calculations show that the shift of the plasma frequency is governed by the interplay of d‐band filling and electronic correlations. This study advances the knowledge about the peculiar class of highly conducting perovskites toward sustainable transparent conductors and emergent plasmonics.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • resistivity
  • experiment
  • tin
  • Indium