People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lahann, Joerg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Photo‐Arbuzov Reactions as a Broadly Applicable Surface Modification Strategycitations
- 2022Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scalescitations
- 2020Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapycitations
- 2020Molecular Changes in Vapor‐Based Polymer Thin Films Assessed by Characterization of Swelling Properties of Amine‐Functionalized Poly‐p-xylylene
- 2018Surface-initiated RAFT polymerization from vapor-based polymer coatingscitations
- 2018Water‐Stable Nanoporous Polymer Films with Excellent Proton Conductivitycitations
- 2017Polylutidinescitations
- 2017Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanescitations
- 2017pH-responsive aminomethyl functionalized poly(p-xylylene) coatings by chemical vapor deposition polymerizationcitations
- 2017Electrospun Polymer Fiber Lasers for Applications in Vapor Sensingcitations
- 2017Electrospun Polymer Fiber Lasers for Applications in Vapor Sensingcitations
- 2016Optical sensors from electrohydrodynamic jetted polymer fiber resonatorscitations
- 2016Optical sensors from electrohydrodynamic jetted polymer fiber resonatorscitations
- 2015Hierarchically Functionalized Magnetic Core/Multishell Particles and Their Postsynthetic Conversion to Polymer Capsulescitations
- 2015Free-Standing Nanomembranes Based on Selective CVD Deposition of Functional Poly- p -xylylenescitations
- 2014Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal-Organic Frameworkscitations
- 2014Biofunctional Micropatterning of Thermoformed 3D Substratescitations
- 2014Interaction of Human Plasma Proteins with Thin Gelatin-Based Hydrogel Films: A QCM-D and ToF-SIMS Studycitations
- 2013Co-immobilization of Biomolecules on Ultrathin Reactive Chemical Vapor Deposition Coatings Using Multiple Click Chemistry Strategiescitations
- 2011Engineering, characterization and directional self-assembly of anisotropically modified nanocolloidscitations
Places of action
Organizations | Location | People |
---|
article
Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales
Abstract
<jats:title>Abstract</jats:title><jats:p>Mesoscale chiral materials are prepared by lithographic methods, assembly of chiral building blocks, and through syntheses in the presence of polarized light. Typically, these processes result in micrometer‐sized structures, require complex top–down manipulation, or rely on tedious asymmetric separation. Chemical vapor deposition (CVD) polymerization of chiral precursors into supported films of liquid crystals (LCs) are discovered to result in superhierarchical arrangements of enantiomorphically pure nanofibers. Depending on the molecular chirality of the 1‐hydroxyethyl [2.2]paracyclophane precursor, extended arrays of enantiomorphic nanohelices are formed from achiral nematic templates. Arrays of chiral nanohelices extend over hundreds of micrometers and consistently display enantiomorphic micropatterns. The pitch of individual nanohelices depends on the enantiomeric excess and the purity of the chiral precursor, consistent with the theoretical model of a doubly twisted LC director configuration. During CVD of chiral precursors into cholesteric LC films, aspects of molecular and mesoscale asymmetry combine constructively to form regularly twisted nanohelices. Enantiomorphic surfaces permit the tailoring of a wide range of functional properties, such as the asymmetric induction of weak chiral systems.</jats:p>