Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pastorizasantos, Isabel

  • Google
  • 1
  • 8
  • 190

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Colloidal Metal‐Halide Perovskite Nanoplatelets: Thickness‐Controlled Synthesis, Properties, and Application in Light‐Emitting Diodes190citations

Places of action

Chart of shared publication
Polavarapu, Lakshminarayana
1 / 4 shared
Rao, Akshay
1 / 28 shared
Xia, Zhiguo
1 / 7 shared
Sung, Jooyoung
1 / 5 shared
Ye, Junzhi
1 / 18 shared
Pérezjuste, Jorge
1 / 2 shared
Oteromartínez, Clara
1 / 4 shared
Hoye, Robert L. Z.
1 / 26 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Polavarapu, Lakshminarayana
  • Rao, Akshay
  • Xia, Zhiguo
  • Sung, Jooyoung
  • Ye, Junzhi
  • Pérezjuste, Jorge
  • Oteromartínez, Clara
  • Hoye, Robert L. Z.
OrganizationsLocationPeople

article

Colloidal Metal‐Halide Perovskite Nanoplatelets: Thickness‐Controlled Synthesis, Properties, and Application in Light‐Emitting Diodes

  • Polavarapu, Lakshminarayana
  • Pastorizasantos, Isabel
  • Rao, Akshay
  • Xia, Zhiguo
  • Sung, Jooyoung
  • Ye, Junzhi
  • Pérezjuste, Jorge
  • Oteromartínez, Clara
  • Hoye, Robert L. Z.
Abstract

<jats:title>Abstract</jats:title><jats:p>Colloidal metal‐halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near‐unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light‐induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)‐level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide‐based lead‐halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light‐emitting diodes (LEDs). This review discusses the state‐of‐the‐art in colloidal MHP NPls: synthetic routes, thickness‐controlled synthesis of both organic–inorganic hybrid and all‐inorganic MHP NPls, their linear and nonlinear optical properties (including charge‐carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness‐controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.</jats:p>

Topics
  • perovskite
  • photoluminescence
  • phase
  • defect