People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carraro, Francesco
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Polymorphism and orientation control of copper-dicarboxylate metal-organic framework thin films through vapour- and liquid-phase growthcitations
- 2023Targeting telomerase utilizing zeolitic imidazole frameworks as non-viral gene delivery agents across different cancer cell typescitations
- 2023Identifying the Internal Network Structure of a New Copper Isonicotinate Thin-Film Polymorph Obtained via Chemical Vapor Depositioncitations
- 2022Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocompositescitations
- 2022Self‐Assembly of Oriented Antibody‐Decorated Metal–Organic Framework Nanocrystals for Active‐Targeting Applicationscitations
- 2022Self‐Assembly of Oriented Antibody‐Decorated Metal–Organic Framework Nanocrystals for Active‐Targeting Applicationscitations
- 2021MOFs and Biomacromolecules for Biomedical Applicationscitations
- 2021Self-Assembly of Oriented Antibody-Decorated Metal–Organic Framework Nanocrystals for Active-Targeting Applicationscitations
- 2021Metal-Organic Framework-Based Enzyme Biocompositescitations
- 2020Phase dependent encapsulation and release profile of ZIF-based biocompositescitations
- 2020Continuous-Flow Synthesis of ZIF-8 Biocomposites with Tunable Particle Sizecitations
- 2018Nano-structured aluminum surfaces for dropwise condensationcitations
- 2018Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructurescitations
- 2017Hybrid Organic/Inorganic Perovskite-Polymer Nanocompositescitations
- 2015Fast One-Pot Synthesis of MoS2/Crumpled Graphene p-n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Productioncitations
Places of action
Organizations | Location | People |
---|
article
Self-Assembly of Oriented Antibody-Decorated Metal–Organic Framework Nanocrystals for Active-Targeting Applications
Abstract
<p>Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal–organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn<sub>2</sub>(mIM)<sub>2</sub>(CO<sub>3</sub>), from a solution of Zn<sup>2+</sup> and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody–antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.</p>