Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mengüç, Yiğit

  • Google
  • 1
  • 9
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Acoustophoretic Liquefaction for 3D Printing Ultrahigh‐Viscosity Nanoparticle Suspensions26citations

Places of action

Chart of shared publication
Wang, Kaiyang
1 / 2 shared
Xu, Artemis
1 / 1 shared
Matia, Yoav
1 / 1 shared
Liu, Zheng
1 / 10 shared
Wallin, Thomas
1 / 1 shared
Darkesburkey, Cameron
1 / 1 shared
Barreiros, Jose A.
1 / 1 shared
Pan, Wenyang
1 / 3 shared
Giannelis, Emmanuel P.
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Wang, Kaiyang
  • Xu, Artemis
  • Matia, Yoav
  • Liu, Zheng
  • Wallin, Thomas
  • Darkesburkey, Cameron
  • Barreiros, Jose A.
  • Pan, Wenyang
  • Giannelis, Emmanuel P.
OrganizationsLocationPeople

article

Acoustophoretic Liquefaction for 3D Printing Ultrahigh‐Viscosity Nanoparticle Suspensions

  • Wang, Kaiyang
  • Xu, Artemis
  • Matia, Yoav
  • Liu, Zheng
  • Mengüç, Yiğit
  • Wallin, Thomas
  • Darkesburkey, Cameron
  • Barreiros, Jose A.
  • Pan, Wenyang
  • Giannelis, Emmanuel P.
Abstract

<jats:title>Abstract</jats:title><jats:p>An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)‐based 3D printing is reported. This enhanced flow enables processing of ultrahigh‐viscosity resins (μ<jats:sub>app</jats:sub> &gt; 3700 Pa s at shear rates  = 0.01 s<jats:sup>–1</jats:sup>) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto–mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s<jats:sup>–1</jats:sup> at acoustic transduction frequencies of 110 s<jats:sup>–1</jats:sup>. Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL‐DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL‐DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts &gt;3 × faster when compared to conventional methodologies.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • simulation
  • composite
  • viscosity
  • resin