Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sheelamanthula, Rajendar

  • Google
  • 7
  • 59
  • 776

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology14citations
  • 2023An ordered, self-assembled nanocomposite with efficient electronic and ionic transport.54citations
  • 2023Controlling swelling in mixed transport polymers through alkyl side-chain physical cross-linking.14citations
  • 2022Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution64citations
  • 2021Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenes124citations
  • 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability253citations
  • 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability.253citations

Places of action

Chart of shared publication
Arslan, Volkan
1 / 2 shared
Hama, Adel
1 / 1 shared
Uguz, Ilke
1 / 3 shared
Griggs, Sophie
1 / 9 shared
Shepard, Kenneth
1 / 1 shared
Stanton, John
1 / 1 shared
Grundy, Lorena S.
1 / 1 shared
Giovannitti, Alexander
4 / 11 shared
Balsara, Nitash P.
1 / 2 shared
Takacs, Christopher J.
1 / 3 shared
Lecroy, Garrett
2 / 5 shared
Mcculloch, Iain
5 / 44 shared
Salleo, Alberto
4 / 38 shared
Reimer, Jeffrey A.
1 / 1 shared
Quill, Tyler J.
1 / 3 shared
Halat, David M.
1 / 4 shared
Frost, Jarvist M.
1 / 21 shared
Siemons, Nicholas
1 / 2 shared
Hallani, Rawad K.
2 / 5 shared
Yu, Hang
1 / 3 shared
Tuladhar, Sachetan M.
1 / 3 shared
Nelson, Jenny
1 / 21 shared
Pearce, Drew
1 / 6 shared
Castillo, Tania Cecilia Hidalgo
1 / 1 shared
Kosco, Jan
2 / 2 shared
Sachs, Michael
1 / 1 shared
Zhang, Weimin
1 / 13 shared
Zhao, Lingyun
1 / 1 shared
Durrant, James
1 / 4 shared
Sougrat, Rachid
1 / 3 shared
Anthopoulos, Thomas D.
1 / 33 shared
Willner, Benjamin Joel
1 / 1 shared
Moser, Maximilian
4 / 12 shared
Howells, Calvyn
1 / 2 shared
Gonzalez-Carrero, Soranyel
1 / 1 shared
Neophytou, Marios
1 / 4 shared
Thorley, Karl J.
1 / 1 shared
Rashid, Reem B.
1 / 3 shared
Parker, Joseph P.
1 / 1 shared
Drury, Oscar
1 / 2 shared
Rivnay, Jonathan
1 / 10 shared
Petty, Anthony J.
1 / 5 shared
Costantini, Giovanni
1 / 21 shared
Inal, Sahika
3 / 13 shared
Sohn, Wonil
1 / 2 shared
Morovic, Stefania
1 / 1 shared
Alsufyani, Maryam
1 / 4 shared
Savva, Achilleas
1 / 9 shared
Paulsen, Bryan D.
1 / 6 shared
Berggren, Magnus
2 / 44 shared
Gladisch, Johannes
2 / 7 shared
Wadsworth, Andrew
2 / 4 shared
Zozoulenko, Igor
2 / 20 shared
Ghosh, Sarbani
2 / 7 shared
Hidalgo, Tania Cecilia
2 / 2 shared
Gasparini, Nicola
2 / 20 shared
Surgailis, Jokubas
2 / 3 shared
Stavrinidou, Eleni
2 / 9 shared
Thiburce, Quentin
2 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Arslan, Volkan
  • Hama, Adel
  • Uguz, Ilke
  • Griggs, Sophie
  • Shepard, Kenneth
  • Stanton, John
  • Grundy, Lorena S.
  • Giovannitti, Alexander
  • Balsara, Nitash P.
  • Takacs, Christopher J.
  • Lecroy, Garrett
  • Mcculloch, Iain
  • Salleo, Alberto
  • Reimer, Jeffrey A.
  • Quill, Tyler J.
  • Halat, David M.
  • Frost, Jarvist M.
  • Siemons, Nicholas
  • Hallani, Rawad K.
  • Yu, Hang
  • Tuladhar, Sachetan M.
  • Nelson, Jenny
  • Pearce, Drew
  • Castillo, Tania Cecilia Hidalgo
  • Kosco, Jan
  • Sachs, Michael
  • Zhang, Weimin
  • Zhao, Lingyun
  • Durrant, James
  • Sougrat, Rachid
  • Anthopoulos, Thomas D.
  • Willner, Benjamin Joel
  • Moser, Maximilian
  • Howells, Calvyn
  • Gonzalez-Carrero, Soranyel
  • Neophytou, Marios
  • Thorley, Karl J.
  • Rashid, Reem B.
  • Parker, Joseph P.
  • Drury, Oscar
  • Rivnay, Jonathan
  • Petty, Anthony J.
  • Costantini, Giovanni
  • Inal, Sahika
  • Sohn, Wonil
  • Morovic, Stefania
  • Alsufyani, Maryam
  • Savva, Achilleas
  • Paulsen, Bryan D.
  • Berggren, Magnus
  • Gladisch, Johannes
  • Wadsworth, Andrew
  • Zozoulenko, Igor
  • Ghosh, Sarbani
  • Hidalgo, Tania Cecilia
  • Gasparini, Nicola
  • Surgailis, Jokubas
  • Stavrinidou, Eleni
  • Thiburce, Quentin
OrganizationsLocationPeople

article

Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution

  • Sheelamanthula, Rajendar
  • Castillo, Tania Cecilia Hidalgo
  • Kosco, Jan
  • Sachs, Michael
  • Zhang, Weimin
  • Zhao, Lingyun
  • Durrant, James
  • Sougrat, Rachid
  • Anthopoulos, Thomas D.
  • Willner, Benjamin Joel
  • Moser, Maximilian
  • Howells, Calvyn
  • Gonzalez-Carrero, Soranyel
Abstract

<jats:title>Abstract</jats:title><jats:p>Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen‐evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H<jats:sub>2</jats:sub>‐evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H<jats:sub>2</jats:sub>‐evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high‐frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • dielectric constant
  • semiconductor
  • Hydrogen