Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krstić, Marjan

  • Google
  • 2
  • 14
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Avoiding the Center-Symmetry Trap20citations
  • 2021Avoiding the Center-Symmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Filmscitations

Places of action

Chart of shared publication
Hofmann, Dennis
2 / 2 shared
Goll, David
2 / 2 shared
Zojer, Egbert
2 / 8 shared
Sapotta, Benedikt
2 / 2 shared
Xu, Zhiyun
2 / 2 shared
Kühner, Hannes
2 / 2 shared
Hecht, Stefan
2 / 13 shared
Rockstuhl, Carsten
2 / 17 shared
Haldar, Ritesh
2 / 12 shared
Nefedov, Alexei
2 / 31 shared
Wöll, Christof
2 / 15 shared
Bräse, Stefan
2 / 32 shared
Tegeder, Petra
2 / 11 shared
Wenzel, Wolfgang
2 / 15 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hofmann, Dennis
  • Goll, David
  • Zojer, Egbert
  • Sapotta, Benedikt
  • Xu, Zhiyun
  • Kühner, Hannes
  • Hecht, Stefan
  • Rockstuhl, Carsten
  • Haldar, Ritesh
  • Nefedov, Alexei
  • Wöll, Christof
  • Bräse, Stefan
  • Tegeder, Petra
  • Wenzel, Wolfgang
OrganizationsLocationPeople

article

Avoiding the Center-Symmetry Trap

  • Hofmann, Dennis
  • Goll, David
  • Zojer, Egbert
  • Sapotta, Benedikt
  • Xu, Zhiyun
  • Krstić, Marjan
  • Kühner, Hannes
  • Hecht, Stefan
  • Rockstuhl, Carsten
  • Haldar, Ritesh
  • Nefedov, Alexei
  • Wöll, Christof
  • Bräse, Stefan
  • Tegeder, Petra
  • Wenzel, Wolfgang
Abstract

<p>Liquid-phase, quasi-epitaxial growth is used to stack asymmetric, dipolar organic compounds on inorganic substrates, permitting porous, crystalline molecular materials that lack inversion symmetry. This allows material fabrication with built-in electric fields. A new programmed assembly strategy based on metal–organic frameworks (MOFs) is described that facilitates crystalline, noncentrosymmetric space groups for achiral compounds. Electric fields are integrated into crystalline, porous thin films with an orientation normal to the substrate. Changes in electrostatic potential are detected via core-level shifts of marker atoms on the MOF thin films and agree with theoretical results. The integration of built-in electric fields into organic, crystalline, and porous materials creates possibilities for band structure engineering to control the alignment of electronic levels in organic molecules. Built-in electric fields may also be used to tune the transfer of charges from donors loaded via programmed assembly into MOF pores. Applications include organic electronics, photonics, and nonlinear optics, since the absence of inversion symmetry results in a clear second-harmonic generation signal.</p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • compound
  • phase
  • thin film
  • organic compound
  • band structure
  • space group