Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oses, Corey

  • Google
  • 3
  • 25
  • 464

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Entropy Landscaping of High‐Entropy Carbides67citations
  • 2020On-the-fly closed-loop materials discovery via Bayesian active learning296citations
  • 2019Predicting superhard materials via a machine learning informed evolutionary structure search101citations

Places of action

Chart of shared publication
Lebeau, James M.
1 / 3 shared
Esters, Marco
1 / 2 shared
Kumar, Abinash
1 / 4 shared
Brenner, Donald
1 / 2 shared
Feng, Lun
1 / 3 shared
Maria, Jonpaul
1 / 2 shared
Curtarolo, Stefano
3 / 12 shared
Toher, Cormac
3 / 8 shared
Borman, Trent
1 / 1 shared
Hossain, Mohammad Delower
1 / 1 shared
Fahrenholtz, William G.
1 / 19 shared
Sarker, Suchismita
1 / 5 shared
Ichiro, Takeuchi
1 / 2 shared
Zhang, Huairuo
1 / 6 shared
Yu, Heshan
1 / 2 shared
Wu, Changming
1 / 1 shared
Decost, Brian
1 / 1 shared
Hattrick-Simpers, Jason
1 / 1 shared
Davydov, Albert
1 / 4 shared
Bendersky, Leonid A.
1 / 2 shared
Avery, Patrick
1 / 1 shared
Zurek, Eva
1 / 3 shared
Proserpio, Davide M.
1 / 8 shared
Gossett, Eric
1 / 1 shared
Wang, Xiaoyu
1 / 5 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Lebeau, James M.
  • Esters, Marco
  • Kumar, Abinash
  • Brenner, Donald
  • Feng, Lun
  • Maria, Jonpaul
  • Curtarolo, Stefano
  • Toher, Cormac
  • Borman, Trent
  • Hossain, Mohammad Delower
  • Fahrenholtz, William G.
  • Sarker, Suchismita
  • Ichiro, Takeuchi
  • Zhang, Huairuo
  • Yu, Heshan
  • Wu, Changming
  • Decost, Brian
  • Hattrick-Simpers, Jason
  • Davydov, Albert
  • Bendersky, Leonid A.
  • Avery, Patrick
  • Zurek, Eva
  • Proserpio, Davide M.
  • Gossett, Eric
  • Wang, Xiaoyu
OrganizationsLocationPeople

article

Entropy Landscaping of High‐Entropy Carbides

  • Oses, Corey
  • Lebeau, James M.
  • Esters, Marco
  • Kumar, Abinash
  • Brenner, Donald
  • Feng, Lun
  • Maria, Jonpaul
  • Curtarolo, Stefano
  • Toher, Cormac
  • Borman, Trent
  • Hossain, Mohammad Delower
  • Fahrenholtz, William G.
Abstract

<jats:title>Abstract</jats:title><jats:p>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (&gt;3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.</jats:p>

Topics
  • density
  • phase
  • theory
  • thin film
  • physical vapor deposition
  • carbide
  • density functional theory
  • quenching