People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barlow, Stephen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Surface doping of rubrene single crystals by molecular electron donors and acceptors
- 2023Improving the Resistance of Molecularly Doped Polymer Semiconductor Layers to Solvent
- 2022Controlled n‐Doping of Naphthalene‐Diimide‐Based 2D Polymerscitations
- 2022Controlled n‐Doping of Naphthalene‐Diimide‐Based 2D Polymerscitations
- 2022Visualisation of individual dopants in a conjugated polymer : sub-nanometre 3D spatial distribution and correlation with electrical propertiescitations
- 2022Double Doping of a Low-Ionization-Energy Polythiophene with a Molybdenum Dithiolene Complexcitations
- 2020Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n-i-p perovskite solar cellscitations
- 2019Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene)citations
- 2019Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaicscitations
- 2017Absorption Tails of Donor:C-60 Blends Provide Insight into Thermally Activated Charge-Transfer Processes and Polaron Relaxationcitations
- 2016Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxidescitations
- 2007Norbornene-based copolymers with iridium complexes and bis(carbazolyl) fluorene groups in their side-chains and their use in light-emitting diodescitations
Places of action
Organizations | Location | People |
---|
article
Controlled n‐Doping of Naphthalene‐Diimide‐Based 2D Polymers
Abstract
<jats:title>Abstract</jats:title><jats:p>2D polymers (2DPs) are promising as structurally well‐defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)‐containing 2DP semiconductors is enhanced by controllably n‐doping the NDI units using cobaltocene (CoCp<jats:sub>2</jats:sub>). Optical and transient microwave spectroscopy reveal that both as‐prepared NDI‐containing 2DPs are semiconducting with sub‐2 eV optical bandgaps and photoexcited charge‐carrier lifetimes of tens of nanoseconds. Following reduction with CoCp<jats:sub>2</jats:sub>, both 2DPs largely retain their periodic structures and exhibit optical and electron‐spin resonance spectroscopic features consistent with the presence of NDI‐radical anions. While the native NDI‐based 2DPs are electronically insulating, maximum bulk conductivities of >10<jats:sup>−4 </jats:sup>S cm<jats:sup>−1</jats:sup> are achieved by substoichiometric levels of n‐doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out‐of‐plane (π‐stacking) crystallographic directions, which indicates that cross‐plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well‐defined, paramagnetic, 2DP n‐type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.</jats:p>