People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boehme, Simon C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Size- and temperature-dependent lattice anisotropy and structural distortion in CsPbBr 3 quantum dots by reciprocal space X-ray total scattering analysiscitations
- 2024Quantifying the Size‐Dependent Exciton‐Phonon Coupling Strength in Single Lead‐Halide Perovskite Quantum Dotscitations
- 2024Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dotscitations
- 2024Quantifying Förster resonance energy transfer from single perovskite quantum dots to organic dyescitations
- 2024Designer phospholipid capping ligands for soft metal halide nanocrystalscitations
- 2023Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlatticescitations
- 2023Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices.
- 2023Size‐ and Temperature‐Dependent Lattice Anisotropy and Structural Distortion in CsPbBr<sub>3</sub> Quantum Dots by Reciprocal Space X‐ray Total Scattering Analysiscitations
- 2023Strongly confined CsPbBr 3 quantum dots as quantum emitters and building blocks for rhombic superlatticescitations
- 2023Designer Phospholipid Capping Ligands for Soft Metal Halide Nanocrystalscitations
- 2021Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyescitations
- 2021Pressure-induced perovskite-to-non-perovskite phase transition in CsPbBr 3citations
- 2021Pressure‐Induced Perovskite‐to‐non‐Perovskite Phase Transition in CsPbBr<sub>3</sub>citations
- 2021Synthesis and characterization of the ternary nitride semiconductor Zn 2 VN 3 : theoretical prediction, combinatorial screening, and epitaxial stabilizationcitations
- 2021Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermographycitations
- 2018Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystalscitations
- 2018Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystalscitations
Places of action
Organizations | Location | People |
---|
article
Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography
Abstract
Luminescent organic–inorganic low-dimensional ns 2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50–100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb 3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP 2 SbBr 5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03–0.04 K −1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP 2 SbBr 5 .