People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koster, Lja
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023The Role of Thermalization in the Cooling Dynamics of Hot Carrier Solar Cellscitations
- 2022A method for identifying the cause of inefficient salt-doping in organic semiconductorscitations
- 2022Vacuum-Deposited Cesium Tin Iodide Thin Films with Tunable Thermoelectric Propertiescitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurementscitations
- 2021Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystalscitations
- 2021Carrier-carrier Coulomb interactions reduce power factor in organic thermoelectricscitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2020Reaching a Double-Digit Dielectric Constant with Fullerene Derivativescitations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020N-type organic thermoelectricscitations
- 2020Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskitescitations
- 20191,8-diiodooctane acts as a photo-acid in organic solar cellscitations
- 2018Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectricscitations
- 2017N-Type Organic Thermoelectricscitations
- 2017Relating polymer chemical structure to the stability of polymer:citations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2016N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stabilitycitations
- 2016A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrentscitations
- 2016Compatibility of PTB7 and [70]PCBM as a Key Factor for the Stability of PTB7citations
- 2015The Effect of Large Compositional Inhomogeneities on the Performance of Organic Solar Cellscitations
- 2015Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubilitycitations
- 2014Strategy for Enhancing the Electric Permittivity of Organic Semiconductors
- 2014Charge transport and recombination in PDPP5Tcitations
- 2011Validity of the Einstein Relation in Disordered Organic Semiconductorscitations
- 2007Device physics of polymercitations
- 2007Device physics of donor/acceptor-blend solar cells
- 2007Hybrid polymer solar cells from highly reactive diethylzinccitations
- 2006Light intensity dependence of open-circuit voltage and short-circuit current of polymer/fullerene solar cellscitations
- 2005Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cellscitations
- 2004Effect of metal electrodes on the performance of polymercitations
Places of action
Organizations | Location | People |
---|
article
Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics
Abstract
<p>There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor–acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host–dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host–dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m<sup>–1</sup> K<sup>–2</sup> is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.</p>