People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveros Mata, Eduardo Sergio
Helmholtz-Zentrum Dresden-Rossendorf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Printable and Stretchable Giant Magnetoresistive Sensors for Highly Compliant and Skin-Conformal Electronics.
Abstract
Highly compliant electronics, naturally conforming to human skin, represent a paradigm shift in the interplay with the surroundings. Solution-processable printing technologies are yet to be developed to comply with requirements to mechanical conformability of on-skin appliances. Here, it is demonstrated that high-performance spintronic elements can be printed on ultrathin 3 µm thick polymeric foils enabling the mechanically imperceptible printed magnetoelectronics, which can adapt to the periodic buckling surface to be biaxially stretched over 100%. They constitute the first example of printed and stretchable giant magnetoresistive sensors, revealing 2 orders of magnitude improvements in mechanical stability and sensitivity at small magnetic fields, compared to the state-of-the-art printed magnetoelectronics. The key enabler of this performance enhancement is the use of elastomeric triblock copolymers as a binder for the magnetosensitive paste. Even when bent to a radius of 16 µm, the sensors printed on ultrathin foils remain intact and possess unmatched sensitivity for printed magnetoelectronics of 3 T<sup>-1</sup> in a low magnetic field of 0.88 mT. The compliant printed sensors can be used as components of on-skin interactive electronics as it is demonstrated with a touchless control of virtual objects including zooming in and out of interactive maps and scrolling through electronic documents.