People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Jaime
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stabilitycitations
- 2024Using spatial confinement to decipher polymorphism in the organic semiconductor p-DTS(FBTTh2)2citations
- 2024Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporationcitations
- 2024Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2024On The Thermal Conductivity of Conjugated Polymers for Thermoelectricscitations
- 2024Enhancing the Electrical Conductivity and Long‐Term Stability of PEDOT:PSS Electrodes through Sequential Treatment with Nitric Acid and Cesium Chloridecitations
- 2024Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers through Controlled Tie Chain Incorporation.
- 2023Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acidcitations
- 2023Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2022Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cellscitations
- 2021Physical Aging Behavior of a Glassy Polyethercitations
- 2021Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealingcitations
- 2020The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells
Abstract
<jats:title>Abstract</jats:title><jats:p>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (<200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions.</jats:p>