Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scheibe, Błażej

  • Google
  • 4
  • 24
  • 330

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors242citations
  • 2019Low-temperature growth of epitaxial Ti <inf>2</inf> AlC MAX phase thin films by low-rate layer-by-layer PVD24citations
  • 2018GQDs-MSNs nanocomposite nanoparticles for simultaneous intracellular drug delivery and fluorescent imaging38citations
  • 2018Preparation and characterization of partially reduced graphene oxide aerogels doped with transition metal ions26citations

Places of action

Chart of shared publication
Bakandritsos, Aristides
1 / 9 shared
Schneemann, Andreas
1 / 6 shared
Kment, Štěpán
1 / 6 shared
Fischer, Roland A.
1 / 66 shared
Otyepka, Michal
1 / 11 shared
Narayana, Chandrabhas
1 / 4 shared
Zbořil, Radek
1 / 17 shared
Ranc, Vaclav
1 / 4 shared
Petr, Martin
1 / 8 shared
Jayaramulu, Kolleboyina
1 / 13 shared
Stavila, Vitalie
1 / 19 shared
Saini, Haneesh
1 / 4 shared
Jurga, Stefan
2 / 59 shared
Pshyk, Oleksander
1 / 5 shared
Kempiński, Mateusz
1 / 11 shared
Romero, Luis Emerson Coy
1 / 35 shared
Jesionowski, Teofil
1 / 24 shared
Kościński, Mikołaj
1 / 3 shared
Nowaczyk, Grzegorz
1 / 20 shared
Flak, Dorota Katarzyna
1 / 4 shared
Przysiecka, Łucja
1 / 4 shared
Szyller, Łukasz
1 / 1 shared
Tadyszak, Krzysztof
1 / 3 shared
Majchrzycki, Łukasz
1 / 8 shared
Chart of publication period
2021
2019
2018

Co-Authors (by relevance)

  • Bakandritsos, Aristides
  • Schneemann, Andreas
  • Kment, Štěpán
  • Fischer, Roland A.
  • Otyepka, Michal
  • Narayana, Chandrabhas
  • Zbořil, Radek
  • Ranc, Vaclav
  • Petr, Martin
  • Jayaramulu, Kolleboyina
  • Stavila, Vitalie
  • Saini, Haneesh
  • Jurga, Stefan
  • Pshyk, Oleksander
  • Kempiński, Mateusz
  • Romero, Luis Emerson Coy
  • Jesionowski, Teofil
  • Kościński, Mikołaj
  • Nowaczyk, Grzegorz
  • Flak, Dorota Katarzyna
  • Przysiecka, Łucja
  • Szyller, Łukasz
  • Tadyszak, Krzysztof
  • Majchrzycki, Łukasz
OrganizationsLocationPeople

article

Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors

  • Bakandritsos, Aristides
  • Scheibe, Błażej
  • Schneemann, Andreas
  • Kment, Štěpán
  • Fischer, Roland A.
  • Otyepka, Michal
  • Narayana, Chandrabhas
  • Zbořil, Radek
  • Ranc, Vaclav
  • Petr, Martin
  • Jayaramulu, Kolleboyina
  • Stavila, Vitalie
  • Saini, Haneesh
Abstract

<p>In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH<sub>2</sub> = Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(bdc-NH<sub>2</sub>)<sub>6</sub>; bdc-NH<sub>2</sub> = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH<sub>2</sub> hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH<sub>2</sub> acts as an effective charge storing material with a capacitance of up to 651 F g<sup>−1</sup>, significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH<sub>2</sub> positive electrode with Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg<sup>−1</sup> and an energy density of up to 73 Wh kg<sup>−1</sup>, which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.</p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • energy density
  • amine