Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siegert, Marie

  • Google
  • 1
  • 8
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020HOMO–HOMO Electron Transfer: An Elegant Strategy for p‐Type Doping of Polymer Semiconductors toward Thermoelectric Applications42citations

Places of action

Chart of shared publication
Hochgesang, Adrian
1 / 2 shared
Thelakkat, Mukundan
1 / 14 shared
Goel, Mahima
1 / 2 shared
Pflaum, Jens
1 / 6 shared
Krauss, Gert
1 / 1 shared
Mohanraj, John
1 / 3 shared
Fried, Martina
1 / 1 shared
Heinrich, David C.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hochgesang, Adrian
  • Thelakkat, Mukundan
  • Goel, Mahima
  • Pflaum, Jens
  • Krauss, Gert
  • Mohanraj, John
  • Fried, Martina
  • Heinrich, David C.
OrganizationsLocationPeople

article

HOMO–HOMO Electron Transfer: An Elegant Strategy for p‐Type Doping of Polymer Semiconductors toward Thermoelectric Applications

  • Hochgesang, Adrian
  • Thelakkat, Mukundan
  • Goel, Mahima
  • Pflaum, Jens
  • Krauss, Gert
  • Mohanraj, John
  • Siegert, Marie
  • Fried, Martina
  • Heinrich, David C.
Abstract

Unlike the conventional p‐doping of organic semiconductors (OSCs) using acceptors, here, an efficient doping concept for diketopyrrolopyrrole‐based polymer PDPP[T]\(_{2}\)‐EDOT (OSC‐1) is presented using an oxidized p‐type semiconductor, Spiro‐OMeTAD(TFSI)\(_{2}\) (OSC‐2), exploiting electron transfer from HOMO\(_{OSC-1}\) to HOMO\(_{OSC-2}\). A shift of work function toward the HOMO\(_{OSC-1}\) upon doping is confirmed by ultraviolet photoelectron spectroscopy (UPS). Detailed X‐ray photoelectron spectroscopy (XPS) and UV–vis–NIR absorption studies confirm HOMO\(_{OSC-1}\) to HOMO\(_{OSC-2}\) electron transfer. The reduction products of Spiro‐OMeTAD(TFSI)\(_{2}\) to Spiro‐OMeTAD(TFSI) and Spiro‐OMeTAD is also confirmed and their relative amounts in doped samples is determined. Mott–Schottky analysis shows two orders of magnitude increase in free charge carrier density and one order of magnitude increase in the charge carrier mobility. The conductivity increases considerably by four orders of magnitude to a maximum of 10 S m\(^{-1}\) for a very low doping ratio of 8 mol%. The doped polymer films exhibit high thermal and ambient stability resulting in a maximum power factor of 0.07 µW m\(^{-1}\) K\(^{-2}\) at a Seebeck coefficient of 140 µV K\(^{-1}\) for a very low doping ratio of 4 mol%. Also, the concept of HOMO\(_{OSC-1}\) to HOMO\(_{OSC-2}\) electron transfer is a highly efficient, stable and generic way to p‐dope other conjugated polymers.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • mobility
  • x-ray photoelectron spectroscopy
  • semiconductor
  • ultraviolet photoelectron spectroscopy