People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caprioglio, Pietro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Ion-induced field screening as a dominant factor in perovskite solar cell operational stabilitycitations
- 2024Wide-Gap Perovskites for Indoor Photovoltaicscitations
- 2023Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cellscitations
- 2023Chloride‐Based Additive Engineering for Efficient and Stable Wide‐Bandgap Perovskite Solar Cellscitations
- 2022Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
- 2022Perovskite-organic tandem solar cells with indium oxide interconnectcitations
- 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ionscitations
- 2021Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cellscitations
- 2021Pathways toward 30% efficient single-junction perovskite solar cells and the role of mobile ionscitations
- 2021Universal Current Losses in Perovskite Solar Cells Due to Mobile Ionscitations
- 2021Universal current losses in Perovskite solar cells due to mobile ionscitations
- 2020Non-radiative recombination losses in perovskite solar cells
- 2020How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%citations
- 2019The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cellscitations
- 2019The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cellscitations
- 2019The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cellscitations
- 2019High open circuit voltages in pin-type perovskite solar cells through strontium additioncitations
Places of action
Organizations | Location | People |
---|
article
How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%
Abstract
<jats:title>Abstract</jats:title><jats:p>Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1‐sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non‐radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open‐circuit voltage and the internal quasi‐Fermi level splitting (QFLS), the transport resistance‐free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity‐dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non‐radiative fill factor and open‐circuit voltage loss. It is found that potassium‐passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.</jats:p>