People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Howlett, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Single‐ion conducting polymer as lithium salt additive in polymerized ionic liquid block copolymer electrolytecitations
- 2021Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquidscitations
- 2020Toward High‐Energy‐Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytescitations
- 2020Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteriescitations
- 2016Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cellscitations
- 2016Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of watercitations
- 2016Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storagecitations
- 2016Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquidscitations
- 2016In-situ-activated N-doped mesoporous carbon from a protic salt and its performance in supercapacitorscitations
- 2015Ionic transport through a composite structure of N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystals reinforced with polymer nanofibrescitations
- 2015Enhanced ionic mobility in Organic Ionic Plastic Crystal – Dendrimer solid electrolytescitations
- 2010Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloycitations
- 2010Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide
Places of action
Organizations | Location | People |
---|
article
Toward High‐Energy‐Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes
Abstract
<jats:title>Abstract</jats:title><jats:p>With increasing demands for safe, high capacity energy storage to support personal electronics, newer devices such as unmanned aerial vehicles, as well as the commercialization of electric vehicles, current energy storage technologies are facing increased challenges. Although alternative batteries have been intensively investigated, lithium (Li) batteries are still recognized as the preferred energy storage solution for the consumer electronics markets and next generation automobiles. However, the commercialized Li batteries still have disadvantages, such as low capacities, potential safety issues, and unfavorable cycling life. Therefore, the design and development of electromaterials toward high‐energy‐density, long‐life‐span Li batteries with improved safety is a focus for researchers in the field of energy materials. Herein, recent advances in the development of novel organic electrolytes are summarized toward solid‐state Li batteries with higher energy density and improved safety. On the basis of new insights into ionic conduction and design principles of organic‐based solid‐state electrolytes, specific strategies toward developing these electrolytes for Li metal anodes, high‐energy‐density cathode materials (e.g., high voltage materials), as well as the optimization of cathode formulations are outlined. Finally, prospects for next generation solid‐state electrolytes are also proposed.</jats:p>