People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Waser, Rainer
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Variability-aware modeling of electrochemical metallization memory cells
- 2024Space charge governs the kinetics of metal exsolutioncitations
- 2023Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin filmscitations
- 2021Carbonate formation lowers the electrocatalytic activity of perovskite oxides for water electrolysiscitations
- 2020Control of stoichiometry and morphology in polycrystalline V2O3 thin films using oxygen bufferscitations
- 2020Defect chemistry of donor-doped BaTiO 3 with BaO-excess for reduction resistant PTCR thermistor applications – redox-behaviourcitations
- 2020Competition between V2O3 phases deposited by one-step reactive sputtering process on polycrystalline conducting electrodecitations
- 2019Topotactic Phase Transition Driving Memristive Behaviorcitations
- 2019Electrochemical metallization ReRAMs (ECM) - Experiments and modellingcitations
- 2019Electrolysis of Water at Atomically Tailored Epitaxial Cobaltite Surfacescitations
- 2018A Theoretical and Experimental View on the Temperature Dependence of the Electronic Conduction through a Schottky Barrier in a Resistively Switching SrTiO3-Based Memory Cellcitations
- 2018Addressing Multiple Resistive States of Polyoxovanadatescitations
- 2018Reduction of the forming voltage through tailored oxygen non-stoichiometry in tantalum oxide ReRAM devicescitations
- 2017Electrochemical Tantalum Oxide for Resistive Switching Memoriescitations
- 2017Spectroscopic indications of tunnel barrier charging as the switching mechanism in memristive devicescitations
- 2015Formation and Movement of Cationic Defects During Forming and Resistive Switching in $mathrm{SrTiO_3}$ Thin Film Devicescitations
- 2015Impedance spectroscopy study of the unipolar and bipolar resistive switching states of atomic layer deposited polycrystalline ZrO2 thin filmscitations
- 2015The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin filmscitations
- 2015Resistive Switching of Individual, Chemically Synthesized TiO $_{2}$ Nanoparticlescitations
- 2014Fast mapping of inhomogeneities in the popular metallic perovskite Nb:SrTiO 3 by confocal Raman microscopycitations
- 2014Physical origins and suppression of Ag dissolution in $mathrm{GeS_x}$-based ECM cellscitations
- 2014Atomic Layer Deposition of TiO x /Al 2 O 3 Bilayer Structures for Resistive Switching Memory Applicationscitations
- 2013Growth and crystallization of TiO 2 thin films by atomic layer deposition using a novel amido guanidinate titanium source and tetrakis-dimethylamido-titanium
- 2013Dysprosium-doped (Ba, Sr) TiO3 thin films on nickel foilsfor capacitor applicationscitations
- 2013Feasibility studies for filament detection in resistively switching SrTiO3 devices by employing grazing incidence small angle X-ray scatteringcitations
- 2012Electrochemical metallization cells—blending nanoionics into nanoelectronics?citations
- 2011Spark plasma sintering of nanocrystalline BaTiO3-powders: consolidation behavior and dielectric characteristicscitations
- 2005High-k dielectric materials by metalorganic chemical vapor deposition : Growth and characterization
- 2001Thickness dependent morphology and electrical characteristics of SrBi 2Ta2O9 deposited by metal organic decompositioncitations
Places of action
Organizations | Location | People |
---|
article
Topotactic Phase Transition Driving Memristive Behavior
Abstract
Redox‐based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen‐ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen‐ion transport properties for resistive‐switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X‐ray absorption spectromicroscopy, it is demonstrated that the reversible redox‐based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5, and the conductive perovskite phase, SrFeO3, gives rise to the resistive‐switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric‐field‐induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in‐plane direction of the device. In contrast, (111)‐grown SrFeO2.5 devices with out‐of‐plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive‐switching mechanism in SrFeOx‐based memristive devices within the framework of metal–insulator topotactic phase transitions.