Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heisig, Thomas

  • Google
  • 5
  • 29
  • 115

Forschungszentrum Jülich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO 2 Rutile Single Crystals4citations
  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO<sub>2</sub> Rutile Single Crystals4citations
  • 2020Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devicescitations
  • 2020Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices25citations
  • 2019Topotactic Phase Transition Driving Memristive Behavior82citations

Places of action

Chart of shared publication
Alessio, Andrea
2 / 4 shared
Dittmann, Regina
5 / 40 shared
Picollo, Federico
2 / 8 shared
Martinez-Criado, Gema
2 / 3 shared
Truccato, Marco
2 / 8 shared
Bonino, Valentina
2 / 5 shared
Torsello, Daniele
2 / 15 shared
Mino, Lorenzo
2 / 6 shared
Glöß, Maria
2 / 3 shared
Kler, Joe
2 / 4 shared
De Souza, Roger A.
1 / 11 shared
Locatelli, Andrea
2 / 12 shared
Baeumer, Christoph
1 / 8 shared
Moors, Marco
2 / 10 shared
Menteş, Tevfik Onur
2 / 5 shared
Du, Hongchu
2 / 8 shared
Genuzio, Francesca
2 / 3 shared
Hensling, Felix
2 / 4 shared
Mayer, Joachim
2 / 30 shared
Souza, Roger A. De
1 / 5 shared
Bäumer, Christoph
2 / 30 shared
Zamborlini, Giovanni
1 / 9 shared
Waser, Rainer
1 / 29 shared
Jung, Chang Uk
1 / 3 shared
Schneider, Claus M.
1 / 20 shared
Jugovac, Matteo
1 / 15 shared
Feyer, Vitaliy
1 / 20 shared
Nallagatla, Venkata R.
1 / 1 shared
Kim, Miyoung
1 / 3 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Alessio, Andrea
  • Dittmann, Regina
  • Picollo, Federico
  • Martinez-Criado, Gema
  • Truccato, Marco
  • Bonino, Valentina
  • Torsello, Daniele
  • Mino, Lorenzo
  • Glöß, Maria
  • Kler, Joe
  • De Souza, Roger A.
  • Locatelli, Andrea
  • Baeumer, Christoph
  • Moors, Marco
  • Menteş, Tevfik Onur
  • Du, Hongchu
  • Genuzio, Francesca
  • Hensling, Felix
  • Mayer, Joachim
  • Souza, Roger A. De
  • Bäumer, Christoph
  • Zamborlini, Giovanni
  • Waser, Rainer
  • Jung, Chang Uk
  • Schneider, Claus M.
  • Jugovac, Matteo
  • Feyer, Vitaliy
  • Nallagatla, Venkata R.
  • Kim, Miyoung
OrganizationsLocationPeople

article

Topotactic Phase Transition Driving Memristive Behavior

  • Zamborlini, Giovanni
  • Dittmann, Regina
  • Waser, Rainer
  • Jung, Chang Uk
  • Schneider, Claus M.
  • Jugovac, Matteo
  • Feyer, Vitaliy
  • Heisig, Thomas
  • Nallagatla, Venkata R.
  • Bäumer, Christoph
  • Kim, Miyoung
Abstract

Redox‐based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen‐ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen‐ion transport properties for resistive‐switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X‐ray absorption spectromicroscopy, it is demonstrated that the reversible redox‐based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5, and the conductive perovskite phase, SrFeO3, gives rise to the resistive‐switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric‐field‐induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in‐plane direction of the device. In contrast, (111)‐grown SrFeO2.5 devices with out‐of‐plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive‐switching mechanism in SrFeOx‐based memristive devices within the framework of metal–insulator topotactic phase transitions.

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • Oxygen
  • phase transition
  • vacancy