People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schorr, Susan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024The big bang of halide perovskites: The starting point of crystallization
- 2023Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors
- 2023Understanding the growth mechanism of BaZrS 3 chalcogenide perovskite thin films from sulfurized oxide precursorscitations
- 2023Synergistic Role of Water and Oxygen Leads to Degradation in Formamidinium-Based Halide Perovskites
- 2023Synergistic Role of Water and Oxygen Leads to Degradation in Formamidinium-Based Halide Perovskitescitations
- 2023Solvent and A-Site Cation Control Preferred Crystallographic Orientation in Bromine-Based Perovskite Thin Films
- 2023Interplay of Static and Dynamic Disorder in the Mixed-Metal Chalcohalide Sn2SbS2I3
- 2023Understanding the growth mechanism of BaZrS<sub>3</sub> chalcogenide perovskite thin films from sulfurized oxide precursorscitations
- 2023Stability of Cu2ZnSnSe4/CdS heterojunction based solar cells under soft post-deposition thermal treatmentscitations
- 2020The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr(3)citations
- 2020Metal-containing ceramic nanocomposites synthesized from metal acetates and polysilazane
- 2020Atomic scale structure and its impact on the band gap energy for Cu2Zn(Sn,Ge)Se(4)kesterite alloys
- 2020The influence of deuteration on the crystal structureof hybrid halide perovskites ; a temperature-depen-dent neutron diffraction study of FAPbBr3
- 2020Atomic scale structure and its impact on the band gap energy for Cu$_{2}$Zn(Sn,Ge)Se$_{4}$ kesterite alloyscitations
- 2019The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cellscitations
- 2019The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cellscitations
- 2019The Effect of Copper Vacancies on the Anion Position of Chalcopyrite Type CuGaS<sub>2</sub>citations
- 2018Synthesis, theoretical and experimental characterisation of thin film Cu2Sn1-xGexS3 ternary alloys (x = 0 to 1): Homogeneous intermixing of Sn and Gecitations
- 2009Structural Properties of Chalcopyrite-related 1:3:5 Copper-poor Compounds and their Influence on Thin-film Devicescitations
Places of action
Organizations | Location | People |
---|
article
The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells
Abstract
<jats:title>Abstract</jats:title><jats:p>2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite‐based cells. Herein, 2D (CH<jats:sub>3</jats:sub>(CH<jats:sub>2</jats:sub>)<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>(CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>)<jats:italic><jats:sub>n</jats:sub></jats:italic><jats:sub>−1</jats:sub>Pb<jats:italic><jats:sub>n</jats:sub></jats:italic>I<jats:sub>3</jats:sub><jats:italic><jats:sub>n</jats:sub></jats:italic><jats:sub>+1</jats:sub> perovskite cells with different numbers of [PbI<jats:sub>6</jats:sub>]<jats:sup>4−</jats:sup> sheets (<jats:italic>n</jats:italic> = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open‐circuit voltage (<jats:italic>V</jats:italic><jats:sub>OC</jats:sub>) losses outweigh radiative losses in materials with <jats:italic>n</jats:italic> > 2. The <jats:italic>n</jats:italic> = 3 and <jats:italic>n</jats:italic> = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C<jats:sub>60</jats:sub> interface. This tradeoff results in a similar PLQY in all devices, including the <jats:italic>n</jats:italic> = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi‐Fermi level splitting matches the device <jats:italic>V</jats:italic><jats:sub>OC</jats:sub> within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized <jats:italic>n</jats:italic> = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements.</jats:p>