People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caprioglio, Pietro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Ion-induced field screening as a dominant factor in perovskite solar cell operational stabilitycitations
- 2024Wide-Gap Perovskites for Indoor Photovoltaicscitations
- 2023Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cellscitations
- 2023Chloride‐Based Additive Engineering for Efficient and Stable Wide‐Bandgap Perovskite Solar Cellscitations
- 2022Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
- 2022Perovskite-organic tandem solar cells with indium oxide interconnectcitations
- 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ionscitations
- 2021Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cellscitations
- 2021Pathways toward 30% efficient single-junction perovskite solar cells and the role of mobile ionscitations
- 2021Universal Current Losses in Perovskite Solar Cells Due to Mobile Ionscitations
- 2021Universal current losses in Perovskite solar cells due to mobile ionscitations
- 2020Non-radiative recombination losses in perovskite solar cells
- 2020How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%citations
- 2019The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cellscitations
- 2019The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cellscitations
- 2019The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cellscitations
- 2019High open circuit voltages in pin-type perovskite solar cells through strontium additioncitations
Places of action
Organizations | Location | People |
---|
article
The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells
Abstract
<jats:title>Abstract</jats:title><jats:p>2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite‐based cells. Herein, 2D (CH<jats:sub>3</jats:sub>(CH<jats:sub>2</jats:sub>)<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>(CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>)<jats:italic><jats:sub>n</jats:sub></jats:italic><jats:sub>−1</jats:sub>Pb<jats:italic><jats:sub>n</jats:sub></jats:italic>I<jats:sub>3</jats:sub><jats:italic><jats:sub>n</jats:sub></jats:italic><jats:sub>+1</jats:sub> perovskite cells with different numbers of [PbI<jats:sub>6</jats:sub>]<jats:sup>4−</jats:sup> sheets (<jats:italic>n</jats:italic> = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open‐circuit voltage (<jats:italic>V</jats:italic><jats:sub>OC</jats:sub>) losses outweigh radiative losses in materials with <jats:italic>n</jats:italic> > 2. The <jats:italic>n</jats:italic> = 3 and <jats:italic>n</jats:italic> = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C<jats:sub>60</jats:sub> interface. This tradeoff results in a similar PLQY in all devices, including the <jats:italic>n</jats:italic> = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi‐Fermi level splitting matches the device <jats:italic>V</jats:italic><jats:sub>OC</jats:sub> within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized <jats:italic>n</jats:italic> = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements.</jats:p>