Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Narasimman, Govind

  • Google
  • 1
  • 11
  • 192

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation192citations

Places of action

Chart of shared publication
Nguyen, Chien A.
1 / 1 shared
Kulkarni, Mohit R.
1 / 1 shared
Mathews, Nripan
1 / 13 shared
Gopalakrishnan, Pradeep Kumar
1 / 1 shared
Meggiolaro, Daniele
1 / 27 shared
Mosconi, Edoardo
1 / 34 shared
Angelis, Filippo De
1 / 30 shared
Ng, Yan Fong
1 / 3 shared
Mhaisalkar, Subodh G.
1 / 5 shared
John, Rohit Abraham
1 / 6 shared
Yantara, Natalia
1 / 6 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Nguyen, Chien A.
  • Kulkarni, Mohit R.
  • Mathews, Nripan
  • Gopalakrishnan, Pradeep Kumar
  • Meggiolaro, Daniele
  • Mosconi, Edoardo
  • Angelis, Filippo De
  • Ng, Yan Fong
  • Mhaisalkar, Subodh G.
  • John, Rohit Abraham
  • Yantara, Natalia
OrganizationsLocationPeople

article

Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation

  • Nguyen, Chien A.
  • Kulkarni, Mohit R.
  • Mathews, Nripan
  • Gopalakrishnan, Pradeep Kumar
  • Meggiolaro, Daniele
  • Mosconi, Edoardo
  • Angelis, Filippo De
  • Ng, Yan Fong
  • Mhaisalkar, Subodh G.
  • John, Rohit Abraham
  • Yantara, Natalia
  • Narasimman, Govind
Abstract

Emulation of brain-like signal processing is the foundation for development of efficient learning circuitry, but few devices offer the tunable conductance range necessary for mimicking spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic transitions with drift-diffusive ionic kinetics would enable energy-efficient analog-like switching of metastable conductance states. Here, ionic–electronic coupling in halide perovskite semiconductors is utilized to create memristive synapses with a dynamic continuous transition of conductance states. Coexistence of carrier injection barriers and ion migration in the perovskite films defines the degree of synaptic plasticity, more notable for the larger organic ammonium and formamidinium cations than the inorganic cesium counterpart. Optimized pulsing schemes facilitates a balanced interplay of short-and long-term plasticity rules like paired-pulse facilitation and spike-time-dependent plasticity, cardinal for learning and computing. Trained as a memory array, halide perovskite synapses demonstrate reconfigurability, learning, forgetting, and fault tolerance analogous to the human brain. Network-level simulations of unsupervised learning of handwritten digit images utilizing experimentally derived device parameters, validates the utility of these memristors for energy-efficient neuromorphic computation, paving way for novel ionotronic neuromorphic architectures with halide perovskites as the active material.

Topics
  • perovskite
  • impedance spectroscopy
  • simulation
  • semiconductor
  • plasticity