People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chiabrera, Francesco Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Operando Electron Microscopy and Impedance Analysis of Solid Oxide Electrolysis and Fuel Cellscitations
- 2023Reconstruction of Low Dimensional Electronic States by Altering the Chemical Arrangement at the SrTiO3 Surfacecitations
- 2022Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devicescitations
- 2022The impact of Mn nonstoichiometry on the oxygen mass transport properties of La Sr Mn O thin filmscitations
- 2022Freestanding Perovskite Oxide Filmscitations
- 2022Defect-induced magnetism in homoepitaxial SrTiO3citations
- 2022Defect-induced magnetism in homoepitaxial SrTiO3citations
- 2021Direct Measurement of Oxygen Mass Transport at the Nanoscalecitations
- 2021A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells
- 2019Interface Engineering in Mixed Ionic Electronic Conductor Thin Films for Solid State Devices
- 2019Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundariescitations
Places of action
Organizations | Location | People |
---|
article
Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundaries
Abstract
<jats:title>Abstract</jats:title><jats:p>Interface‐dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proven that strain‐induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions. We are also able to alter the grain boundary composition by tuning the overall cationic content in the films, which represents a new and powerful tool, beyond the classical space charge layer effect, for engineering electronic and mass transport properties of metal oxide thin films useful for a collection of relevant solid‐state devices.</jats:p>