Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amo-Ochoa, Pilar

  • Google
  • 5
  • 33
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 20232D Cu(I)-I Coordination Polymer with Smart Optoelectronic Properties and Photocatalytic Activity as a Versatile Multifunctional Material13citations
  • 2022Innovative Microstructural Transformation upon CO2 Supercritical Conditions on Metal-Nucleobase Aerogel and Its Use as Effective Filler for HPLC Biomolecules Separation1citations
  • 2020Cunning defects: emission control by structural point defects on Cu(i)I double chain coordination polymers11citations
  • 2020The role of defects in the properties of functional coordination polymers16citations
  • 2018High Electrical Conductivity of Single Metal–Organic Chains14citations

Places of action

Chart of shared publication
Turnbull, Robin
1 / 9 shared
Liang, Akun
1 / 4 shared
Lifante-Pedrola, Ginés
1 / 1 shared
Gonzalez-Platas, Javier
1 / 1 shared
Rodríguez-Mendoza, Ulises R.
2 / 3 shared
Murillo, María
1 / 2 shared
Cabanillas-González, Juan
1 / 1 shared
Wannemacher, Reinhold
1 / 3 shared
Martínez, José I.
2 / 14 shared
García-Hernán, Andrea
1 / 2 shared
Errandonea, Daniel
1 / 14 shared
Castillo, Oscar
1 / 4 shared
Reyes, Efraim
1 / 1 shared
Gomez Garcia, Carlos José
1 / 2 shared
Martínez, José Ignacio
1 / 5 shared
Beobide, Garikoitz
1 / 1 shared
Maldonado, Noelia
1 / 4 shared
Ocón, Pilar
1 / 1 shared
Fernández-Moreira, Vanesa
1 / 3 shared
Fernández-Cestau, Julio
1 / 2 shared
González-Platas, Javier
1 / 4 shared
Zamora, Félix
2 / 5 shared
Conesa-Egea, Javier
1 / 4 shared
Costa, Rubén D.
1 / 8 shared
Castillo-Blas, Celia
1 / 16 shared
Montoro, Carmen
1 / 8 shared
Platero-Prats, Ana E.
1 / 7 shared
Ares, Pablo
2 / 8 shared
Conesa, Javier
1 / 1 shared
Soler, Jose M.
1 / 1 shared
Palacios, Juan Jose
1 / 1 shared
Zamora, Felix
1 / 12 shared
Gomez-Herrero, Julio
1 / 4 shared
Chart of publication period
2023
2022
2020
2018

Co-Authors (by relevance)

  • Turnbull, Robin
  • Liang, Akun
  • Lifante-Pedrola, Ginés
  • Gonzalez-Platas, Javier
  • Rodríguez-Mendoza, Ulises R.
  • Murillo, María
  • Cabanillas-González, Juan
  • Wannemacher, Reinhold
  • Martínez, José I.
  • García-Hernán, Andrea
  • Errandonea, Daniel
  • Castillo, Oscar
  • Reyes, Efraim
  • Gomez Garcia, Carlos José
  • Martínez, José Ignacio
  • Beobide, Garikoitz
  • Maldonado, Noelia
  • Ocón, Pilar
  • Fernández-Moreira, Vanesa
  • Fernández-Cestau, Julio
  • González-Platas, Javier
  • Zamora, Félix
  • Conesa-Egea, Javier
  • Costa, Rubén D.
  • Castillo-Blas, Celia
  • Montoro, Carmen
  • Platero-Prats, Ana E.
  • Ares, Pablo
  • Conesa, Javier
  • Soler, Jose M.
  • Palacios, Juan Jose
  • Zamora, Felix
  • Gomez-Herrero, Julio
OrganizationsLocationPeople

article

High Electrical Conductivity of Single Metal–Organic Chains

  • Soler, Jose M.
  • Amo-Ochoa, Pilar
  • Ares, Pablo
  • Palacios, Juan Jose
  • Zamora, Felix
  • Gomez-Herrero, Julio
Abstract

Molecular wires are essential components for future nanoscale electronics.<br/>However, the preparation of individual long conductive molecules is still a<br/>challenge. MMX metal–organic polymers are quasi-1D sequences of single<br/>halide atoms (X) bridging subunits with two metal ions (MM) connected by<br/>organic ligands. They are excellent electrical conductors as bulk macroscopic<br/>crystals and as nanoribbons. However, according to theoretical calculations,<br/>the electrical conductance found in the experiments should be even higher.<br/>Here, a novel and simple drop-casting procedure to isolate bundles of few to<br/>single MMX chains is demonstrated. Furthermore, an exponential dependence<br/>of the electrical resistance of one or two MMX chains as a function of<br/>their length that does not agree with predictions based on their theoretical<br/>band structure is reported. This dependence is attributed to strong Anderson<br/>localization originated by structural defects. Theoretical modeling confirms<br/>that the current is limited by structural defects, mainly vacancies of iodine<br/>atoms, through which the current is constrained to flow. Nevertheless, measurable<br/>electrical transport along distances beyond 250 nm surpasses that of<br/>all other molecular wires reported so far. This work places in perspective the<br/>role of defects in 1D wires and their importance for molecular electronics.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • defect
  • casting
  • wire
  • electrical conductivity
  • band structure