Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xu, Ruijuan

  • Google
  • 5
  • 42
  • 300

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes10citations
  • 2024Highly confined epsilon-near-zero- and surface-phonon polaritons in SrTiO3 membranescitations
  • 2020Beyond substrates: Strain engineering of ferroelectric membranes100citations
  • 2020Beyond substrates : strain engineering of ferroelectric membranes100citations
  • 2017Three‐State Ferroelastic Switching and Large Electromechanical Responses in PbTiO<sub>3</sub> Thin Films90citations

Places of action

Chart of shared publication
Crust, Kevin J.
2 / 2 shared
Korosec, Lukas
2 / 3 shared
Lee, Yonghun
2 / 3 shared
Rischau, Carl Willem
2 / 6 shared
Bercher, Adrien
2 / 2 shared
Kuzmenko, Alexey
2 / 2 shared
Zhou, Yixi
2 / 2 shared
Hwang, Harold
1 / 1 shared
Crassee, Iris
2 / 2 shared
Dionne, Jennifer
1 / 1 shared
Teyssier, Jérémie
2 / 2 shared
Li, Jiarui
1 / 1 shared
Corder, Stephanie N. Gilbert
1 / 1 shared
Dionne, Jennifer A.
1 / 7 shared
Liu, Yin
1 / 2 shared
Hwang, Harold Y.
3 / 16 shared
Bechtel, Hans A.
1 / 2 shared
Ramesh, Ramamoorthy
2 / 10 shared
Jiang, Yizhe
2 / 2 shared
Gubser, Andrew J.
2 / 2 shared
Qualls, Alexander
2 / 2 shared
Velarde, Gabriel
2 / 3 shared
Pesquera, David
2 / 9 shared
Huang, Yen-Lin
2 / 3 shared
Parsonnet, Eric
2 / 3 shared
Kim, Jieun
3 / 3 shared
Martin, Lane W.
2 / 11 shared
Martin, Lan W.
1 / 1 shared
Balke, Nina
1 / 3 shared
Vasudevan, Rama K.
1 / 2 shared
Rama Damodaran, Anoop
1 / 1 shared
Kalinin, Sergei V.
1 / 18 shared
Dedon, Liv R.
1 / 3 shared
Mccarter, Margaret R.
1 / 2 shared
Jesse, Stephen
1 / 14 shared
Cao, Ye
1 / 5 shared
Agar, Josh C.
1 / 1 shared
Pandya, Shishir
1 / 1 shared
Li, Qian
1 / 3 shared
Saremi, Sahar
1 / 1 shared
Angsten, Tom
1 / 1 shared
Asta, Mark
1 / 8 shared
Chart of publication period
2024
2020
2017

Co-Authors (by relevance)

  • Crust, Kevin J.
  • Korosec, Lukas
  • Lee, Yonghun
  • Rischau, Carl Willem
  • Bercher, Adrien
  • Kuzmenko, Alexey
  • Zhou, Yixi
  • Hwang, Harold
  • Crassee, Iris
  • Dionne, Jennifer
  • Teyssier, Jérémie
  • Li, Jiarui
  • Corder, Stephanie N. Gilbert
  • Dionne, Jennifer A.
  • Liu, Yin
  • Hwang, Harold Y.
  • Bechtel, Hans A.
  • Ramesh, Ramamoorthy
  • Jiang, Yizhe
  • Gubser, Andrew J.
  • Qualls, Alexander
  • Velarde, Gabriel
  • Pesquera, David
  • Huang, Yen-Lin
  • Parsonnet, Eric
  • Kim, Jieun
  • Martin, Lane W.
  • Martin, Lan W.
  • Balke, Nina
  • Vasudevan, Rama K.
  • Rama Damodaran, Anoop
  • Kalinin, Sergei V.
  • Dedon, Liv R.
  • Mccarter, Margaret R.
  • Jesse, Stephen
  • Cao, Ye
  • Agar, Josh C.
  • Pandya, Shishir
  • Li, Qian
  • Saremi, Sahar
  • Angsten, Tom
  • Asta, Mark
OrganizationsLocationPeople

article

Three‐State Ferroelastic Switching and Large Electromechanical Responses in PbTiO<sub>3</sub> Thin Films

  • Balke, Nina
  • Vasudevan, Rama K.
  • Rama Damodaran, Anoop
  • Kim, Jieun
  • Kalinin, Sergei V.
  • Dedon, Liv R.
  • Mccarter, Margaret R.
  • Jesse, Stephen
  • Cao, Ye
  • Agar, Josh C.
  • Pandya, Shishir
  • Li, Qian
  • Saremi, Sahar
  • Xu, Ruijuan
  • Martin, Lane W.
  • Angsten, Tom
  • Asta, Mark
Abstract

<jats:p>Leveraging competition between energetically degenerate states to achieve large field‐driven responses is a hallmark of functional materials, but routes to such competition are limited. Here, a new route to such effects involving domain‐structure competition is demonstrated, which arises from strain‐induced spontaneous partitioning of PbTiO<jats:sub>3</jats:sub> thin films into nearly energetically degenerate, hierarchical domain architectures of coexisting <jats:italic>c/a</jats:italic> and <jats:italic>a<jats:sub>1</jats:sub></jats:italic>/<jats:italic>a<jats:sub>2</jats:sub></jats:italic> domain structures. Using band‐excitation piezoresponse force microscopy, this study manipulates and acoustically detects a facile interconversion of different ferroelastic variants via a two‐step, three‐state ferroelastic switching process (out‐of‐plane polarized <jats:italic>c</jats:italic><jats:sup>+</jats:sup> → in‐plane polarized <jats:italic>a</jats:italic> → out‐of‐plane polarized <jats:italic>c</jats:italic><jats:sup>−</jats:sup> state), which is concomitant with large nonvolatile electromechanical strains (≈1.25%) and tunability of the local piezoresponse and elastic modulus (&gt;23%). It is further demonstrated that deterministic, nonvolatile writing/erasure of large‐area patterns of this electromechanical response is possible, thus showing a new pathway to improved function and properties.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • microscopy