Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wani, Owies Mukhtar

  • Google
  • 2
  • 4
  • 440

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Programming Photoresponse in Liquid Crystal Polymer Actuators with Laser Projector75citations
  • 2017Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer365citations

Places of action

Chart of shared publication
Wasylczyk, Piotr
2 / 6 shared
Priimagi, Arri
2 / 14 shared
Zeng, Hao
2 / 8 shared
Kaczmarek, Radosław
1 / 2 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Wasylczyk, Piotr
  • Priimagi, Arri
  • Zeng, Hao
  • Kaczmarek, Radosław
OrganizationsLocationPeople

article

Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer

  • Kaczmarek, Radosław
  • Wasylczyk, Piotr
  • Priimagi, Arri
  • Zeng, Hao
  • Wani, Owies Mukhtar
Abstract

<p>The iris, found in many animal species, is a biological tissue that can change the aperture (pupil) size to regulate light transmission into the eye in response to varying illumination conditions. The self-regulation of the eye lies behind its autofocusing ability and large dynamic range, rendering it the ultimate "imaging device" and a continuous source of inspiration in science. In optical imaging devices, adjustable apertures play a vital role as they control the light exposure, the depth of field, and optical aberrations of the systems. Tunable irises demonstrated to date require external control through mechanical actuation, and are not capable of autonomous action in response to changing light intensity without control circuitry. A self-regulating artificial iris would offer new opportunities for device automation and stabilization. Here, this paper reports the first iris-like, liquid crystal elastomer device that can perform automatic shape-adjustment by reacting to the incident light power density. Similar to natural iris, the device closes under increasing light intensity, and upon reaching the minimum pupil size, reduces the light transmission by a factor of seven. The light-responsive materials design, together with photoalignment-based control over the molecular orientation, provides a new approach to automatic, self-regulating optical systems based on soft smart materials.</p>

Topics
  • density
  • impedance spectroscopy
  • elastomer
  • liquid crystal