Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shin, Donghyeop

  • Google
  • 1
  • 4
  • 133

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Earth‐Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu<sub>2</sub>BaSn(S,Se)<sub>4</sub> Absorber133citations

Places of action

Chart of shared publication
Blum, Volker
1 / 4 shared
Huang, Xuan
1 / 1 shared
Mitzi, David B.
1 / 5 shared
Gunawan, Oki
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Blum, Volker
  • Huang, Xuan
  • Mitzi, David B.
  • Gunawan, Oki
OrganizationsLocationPeople

article

Earth‐Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu<sub>2</sub>BaSn(S,Se)<sub>4</sub> Absorber

  • Blum, Volker
  • Huang, Xuan
  • Mitzi, David B.
  • Shin, Donghyeop
  • Gunawan, Oki
Abstract

<jats:p>In recent years, Cu<jats:sub>2</jats:sub>ZnSn(S,Se)<jats:sub>4</jats:sub> (CZTSSe) materials have enabled important progress in associated thin‐film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu<jats:sub>2</jats:sub>BaSnS<jats:sub>4</jats:sub> (CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two‐step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high‐quality nominally pinhole‐free films with large (&gt;1 µm) grains of selenium‐incorporated (<jats:italic>x</jats:italic> = 3) Cu<jats:sub>2</jats:sub>BaSnS<jats:sub>4−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Se<jats:italic><jats:sub>x</jats:sub></jats:italic> (CBTSSe) for high‐efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single‐junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air‐annealing step, a CBTSSe‐based PV device with 5.2% PCE (total area 0.425 cm<jats:sup>2</jats:sup>) is reported, &gt;2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se‐rich Cu<jats:sub>2</jats:sub>BaSnS<jats:sub>4–</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Se<jats:italic><jats:sub>x</jats:sub></jats:italic> family for high‐efficiency and earth‐abundant PV.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • photoluminescence
  • grain
  • annealing
  • power conversion efficiency