People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Healy, Noel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2018Wavelength conversion and supercontinuum generation in silicon optical fiberscitations
- 2018Optical-resonance-enhanced nonlinearities in a MoS2-coated single-mode fibercitations
- 2017Laser annealing of low temperature deposited silicon waveguidescitations
- 2016Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibrescitations
- 2016Optical fiber poling by induction: analysis by 2D numerical modelingcitations
- 2015A silicon/lithium niobate hybrid photonic material platform produced by laser processing
- 2014Silicon-based photonic integration beyond the telecommunication wavelength rangecitations
- 2014Extreme electronic bandgap modification in laser-crystallized silicon optical fibrescitations
- 2014Mid-IR heterogeneous silicon photonicscitations
- 2012Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductorscitations
- 2012Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibrescitations
- 2011Zinc selenide optical fiberscitations
Places of action
Organizations | Location | People |
---|
article
Zinc selenide optical fibers
Abstract
Semiconductor waveguide fabrication for photonics applications is usually performed in a planar geometry. However, over the past decade a new field of semiconductor-based optical fiber devices has emerged. The drawing of soft chalcogenide semiconductor glasses together with low melting point metals allows for meters-long distributed photoconductive detectors, for example.[1,2] Crystalline unary semiconductors (e.g., Si, Ge) have been chemically deposited at high pressure into silica capillaries,[3,4] allowing the optical and electronic properties of these materials to be exploited for applications such as all-fiber optoelectronics.[5-7] In contrast to planar rib and ridge waveguides with rectilinear cross sections that generally give rise to polarization dependence, the cylindrical fiber waveguides have the advantage of a circular, polarization-independent cross section. Furthermore, the fiber pores, and thus the wires deposited in them, are exceptionally smooth[8] with extremely uniform diameter over their entire length. The high-pressure chemical vapor deposition (HPCVD) technique is simple, low cost, and flexible so that it can be modified to fill a range of capillaries with differing core dimensions, while high production rates can be obtained by parallel fabrication of multiple fibers in a single deposition. It can also be extended to fill the large number of micro- and nanoscale pores in microstructured optical fibers (MOFs), providing additional geometrical design flexibility to enhance the potential application base of the fiber devices.[9] Semiconductor fibers fabricated via HPCVD in silica pores also retain the inherent characteristics of silica fibers, including their robustness and compatibility with existing optical fiber infrastructure, thus presenting considerable advantages over fibers based on multicomponent soft glasses.