People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liska, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Color-Stable Formulations for 3D-Photoprintable Dental Materialscitations
- 2023Biodegradable, Self‐Reinforcing Vascular Grafts for In Situ Tissue Engineering Approachescitations
- 2023Group transfer polymerization in bulk methacrylatescitations
- 2022Maleimide-styrene-butadiene terpolymerscitations
- 2021Heterotelechelic poly(propylene oxide) as migration-inhibited toughening agent in hot lithography based additive manufacturingcitations
- 2018Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar Aminostyryl-1,3,5-triazinescitations
- 2017Polymers for 3D printing and customized additive manufacturingcitations
- 2017Polymers for 3D printing and customized additive manufacturingcitations
- 2017Evaluation of Difunctional Vinylcyclopropanes as Reactive Diluents for the Development of Low‐Shrinkage Compositescitations
- 2016Tough Photopolymers Based on Vinyl Esters for Biomedical Applicationscitations
- 2013Three-Dimensional Microfabrication of Protein Hydrogels via Two-Photon-Excited Thiol-Vinyl Ester Photopolymerizationcitations
- 2011Lithographiebasierte Fertigung keramischer Bauteile
- 2008Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography
Places of action
Organizations | Location | People |
---|
article
Biodegradable, Self‐Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches
Abstract
<jats:title>Abstract</jats:title><jats:p>Clinically available small‐diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self‐reinforcing TP(U‐urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro‐computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto‐ and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self‐reinforcing SDVGs may be promising candidates for clinical use in the future.</jats:p>