Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miranda, Silvia

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Reinforcement of Polyimine Covalent Adaptable Networks with Mechanically Interlocked Derivatives of SWNTs.citations

Places of action

Chart of shared publication
Pedersen, Henrik
1 / 42 shared
Isasti, Ion
1 / 1 shared
Sabanés, Natalia Martín
1 / 3 shared
Jiménez, David M.
1 / 1 shared
Parzyszek, Sylwia
1 / 2 shared
Perez, Emilio
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Pedersen, Henrik
  • Isasti, Ion
  • Sabanés, Natalia Martín
  • Jiménez, David M.
  • Parzyszek, Sylwia
  • Perez, Emilio
OrganizationsLocationPeople

article

Reinforcement of Polyimine Covalent Adaptable Networks with Mechanically Interlocked Derivatives of SWNTs.

  • Pedersen, Henrik
  • Isasti, Ion
  • Sabanés, Natalia Martín
  • Jiménez, David M.
  • Parzyszek, Sylwia
  • Miranda, Silvia
  • Perez, Emilio
Abstract

<jats:title>Abstract</jats:title><jats:p>There is an urgent need for new approaches to reduce the environmental impact of plastics. One approach is to enhance recyclability. Covalent adaptable networks (CANs), where crosslinks are chemically reversible, offer an attractive alternative to thermoset materials. Another option is to strengthen polymers using nanofillers, to reduce the amount of material needed. In this regard, single‐walled carbon nanotubes (SWNTs) are excellent candidates as fillers due to their extreme strength‐to‐weight ratio and dimensionality. Here, SWNTs functionalized as mechanically‐interlocked derivatives (MINTs) are shown to significantly improve the mechanical properties of polyimine (PI) CANs, with close to optimal efficiency. Enhancements in both stiffness and ultimate strength, approaching 100% load transfer considering the SWNT loading, are observed for PI MINT, while composites made with pristine SWNTs exhibit poor improvement. The PI MINT CANs can be recycled both thermally and chemically without compromising their mechanical properties. Finally, prototype carbon fiber PI MINT laminar composites are also fabricated and characterized, demonstrating a significant increase in their mechanical properties.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • nanotube
  • strength
  • composite
  • thermoset