Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Combarro, Izaskun

  • Google
  • 1
  • 15
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Hybrid Ceramic Polymer Electrolytes Enabling Long Cycling in Practical 1 Ah‐Class High‐Voltage Solid‐State Batteries with Li Metal Anode14citations

Places of action

Chart of shared publication
Ceberio, Itziar Aldalur
1 / 1 shared
Lechartier, Marine
1 / 2 shared
Boaretto, Nicola
1 / 4 shared
Perez Furundarena, Haritz
1 / 1 shared
Kvasha, Andriy
1 / 2 shared
Daniel, Lise
1 / 1 shared
Lobato, Elias
1 / 1 shared
Lindberg, Simon
1 / 2 shared
Bonilla, Francisco Javier Bonilla
1 / 1 shared
Gutiérrezpardo, Antonio
1 / 1 shared
Martinez-Ibañez, Maria
1 / 1 shared
Meabe, Leire
1 / 4 shared
Vincent, Rémi
1 / 2 shared
Genies, Sylvie
1 / 1 shared
Cognard, Jérôme
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ceberio, Itziar Aldalur
  • Lechartier, Marine
  • Boaretto, Nicola
  • Perez Furundarena, Haritz
  • Kvasha, Andriy
  • Daniel, Lise
  • Lobato, Elias
  • Lindberg, Simon
  • Bonilla, Francisco Javier Bonilla
  • Gutiérrezpardo, Antonio
  • Martinez-Ibañez, Maria
  • Meabe, Leire
  • Vincent, Rémi
  • Genies, Sylvie
  • Cognard, Jérôme
OrganizationsLocationPeople

article

Hybrid Ceramic Polymer Electrolytes Enabling Long Cycling in Practical 1 Ah‐Class High‐Voltage Solid‐State Batteries with Li Metal Anode

  • Ceberio, Itziar Aldalur
  • Lechartier, Marine
  • Boaretto, Nicola
  • Perez Furundarena, Haritz
  • Kvasha, Andriy
  • Daniel, Lise
  • Lobato, Elias
  • Lindberg, Simon
  • Bonilla, Francisco Javier Bonilla
  • Gutiérrezpardo, Antonio
  • Martinez-Ibañez, Maria
  • Combarro, Izaskun
  • Meabe, Leire
  • Vincent, Rémi
  • Genies, Sylvie
  • Cognard, Jérôme
Abstract

<jats:title>Abstract</jats:title><jats:p>Solid polymer electrolytes offer a safer alternative to organic liquid electrolytes in high‐voltage lithium metal batteries, yet challenges remain in achieving adequate cyclability, energy density, scalability, and safety. This study presents the cycling performance of 1 Ah high‐voltage lithium polymer batteries featuring a hybrid ceramic polymer electrolyte (HCPE), a lithium metal anode, and a LiNi<jats:sub>0.8</jats:sub>Mn<jats:sub>0.1</jats:sub>Co<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (NMC‐811)‐based positive electrode. The HCPE stands out for its remarkable mechanical properties, with a Young's modulus exceeding 200 MPa at room temperature, providing robust resistance against dendrite formation. The Li||Li symmetric cells exhibited outstanding performance, cycling for over 1000 hours at a capacity of 2 mAh cm<jats:sup>−2</jats:sup>, highlighting the exceptional attributes of HCPE. Full cell testing is conducted under practical conditions, utilizing various cell configurations, from coin cells to large pouch cells with a 1 Ah capacity, achieving an energy density of nearly 250 Wh kg<jats:sup>−1</jats:sup> and promising cyclability with 80% capacity retention after 110 cycles. The study also investigated thermal runaway characteristics, showing comparability with commercial lithium‐ion batteries. This research underscores the scalability and performance of high‐voltage lithium metal polymer batteries, advancing their potential for commercial viability.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • energy density
  • Lithium
  • ceramic