People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scheu, Christina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (49/49 displayed)
- 2024Ostwald Ripening of Ag<sub>2</sub>Te Precipitates in Thermoelectric PbTe: Effects of Crystallography, Dislocations, and Interatomic Bondingcitations
- 2024A potential mechanism for abnormal grain growth in Ni thin films on c-sapphire
- 2024Deciphering the role of Fe impurities in the electrolyte boosting the OER activity of LaNiO$_3$citations
- 2024The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg-Al-Ca alloys under alkaline conditionscitations
- 2024Exploring the Effects of the Photochromic Response and Crystallization on the Local Structure of Noncrystalline Niobium Oxidecitations
- 2024Impact of Hierarchical Dopant‐Induced Microstructure on Thermoelectric Properties of p‐Type Si‐Ge Alloys Revealed by Comprehensive Multi‐Scale Characterizationcitations
- 2024Operando Insights on the Degradation Mechanisms of Rhenium‐Doped and Undoped Molybdenum Disulfide Nanocatalysts During Hydrogen Evolution Reaction and Open‐Circuit Conditionscitations
- 2024Ostwald Ripening of Ag2Te precipitates in thermoelectric PbTe: effects of crystallography, dislocations, and interatomic bondingcitations
- 2023Grain Boundary Phases in NbFeSb Half‐Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materialscitations
- 2023Laves phases in Mg-Al-Ca alloys and their effect on mechanical properties
- 2023Tailoring the Plasticity of Topologically Close‐packed Phases via the Crystals’ Fundamental Building Blockscitations
- 2023Combined structural analysis and cathodoluminescence investigations of single Pr3+-doped Ca2Nb3O10 nanosheets
- 2023Sodium tantalates: monitoring crystallization via in situ total X-ray scatteringcitations
- 2023Constructing phase diagrams for defects by correlated atomic-scale characterizationcitations
- 2023Tailoring the Plasticity of Topologically Close‐Packed Phases via the Crystals’ Fundamental Building Blockscitations
- 2023Operando Insights on the Degradation Mechanisms of Rhenium-doped and Undoped Molybdenum Disulfide Nanocatalysts for Electrolyzer Applications
- 2023Compositional defects in a MoAlB MAB phase thin film grown by high-power pulsed magnetron sputteringcitations
- 2023Enhancing the Thermoelectric Properties via Modulation of Defects in <i>P</i>‐Type MNiSn‐Based (M = Hf, Zr, Ti) Half‐Heusler Materialscitations
- 2023Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economycitations
- 2023Stability and Failure Mechanisms of Al2O3|Al Bilayer Coatings Exposed to 300 Bar Hydrogen at 673 Kcitations
- 2022Exploring stability of a nanoscale complex solid solution thin film by in situ heating transmission electron microscopycitations
- 2022Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquidscitations
- 2021Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth
- 2021Monitoring the Structure Evolution of Titanium Oxide Photocatalysts: From the Molecular Form via the Amorphous State to the Crystalline Phasecitations
- 2021Nanocrystalline equiatomic CoCrFeNi alloy thin films: Are they single phase fcc?citations
- 2021Nanocrystalline equiatomic CoCrFeNi alloy thin filmscitations
- 2020Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10](-) Nanosheets during Heating and Their Photocatalytic Propertiescitations
- 2020Synthesis of plasmonic Fe/Al nanoparticles in ionic liquidscitations
- 2020Microstructure evolution and thermal stability of equiatomic CoCrFeNi films on (0001) alpha-Al2O3citations
- 2020Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanismcitations
- 2020Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid librarycitations
- 2020Chemical segregation and precipitation at anti-phase boundaries in thermoelectric Heusler-Fe2VAlcitations
- 2020Microstructure evolution and thermal stability of equiatomic CoCrFeNi films on (0001) α-Al2O3citations
- 2020High-throughput characterization of Ag–V–O nanostructured thin-film materials libraries for photoelectrochemical solar water splittingcitations
- 2019Remote Tracking of Phase Changes in Cr2AlC Thin Films by In-situ Resistivity Measurementscitations
- 2019Combinatorial synthesis of binary nanoparticles in ionic liquids by cosputtering and mixing of elemental nanoparticlescitations
- 2019Photocurrent recombination through surface segregation in Al-Cr-Fe-O photocathodescitations
- 2019Microstructure evolution and orientation relationships of CoCrFeNi thin films grown on (0001) alpha-Al2O3
- 2019Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticlescitations
- 2019On pinning-depinning and microkink-flow in solid state dewetting: Insights by in-situ ESEM on Al thin filmscitations
- 2018Discovery of a multinary noble metal-free oxygen reduction catalystcitations
- 2018Controlling the Amorphous and Crystalline State of Multinary Alloy Nanoparticles in An Ionic Liquidcitations
- 2018Investigation of Vanadate-metal-oxide thin film systems for solar water splitting
- 2018Combinatorial synthesis and high-throughput characterization of Fe-V-O thin-film materials libraries for solar water splittingcitations
- 2017Fabrication and characterization of abrupt TiO 2 –SiO x core-shell nanowires by a simple heat treatmentcitations
- 2014Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodescitations
- 2010Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Filmscitations
- 2007Tribological properties of nanocomposite CrC x /a-C:H thin filmscitations
- 2003Amorphous Films at Metal/Ceramic Interfacescitations
Places of action
Organizations | Location | People |
---|
article
Impact of Hierarchical Dopant‐Induced Microstructure on Thermoelectric Properties of p‐Type Si‐Ge Alloys Revealed by Comprehensive Multi‐Scale Characterization
Abstract
<jats:title>Abstract</jats:title><jats:p>Dopant‐induced microstructure in thermoelectric materials significantly affects thermoelectric properties and offers a potential to break the interdependence between electron and phonon transport properties. However, identifying all‐scale dopant‐induced microstructures and correlating them with thermoelectric properties remain a huge challenge owing to a lack of detailed microstructural characterization encompassing all length scales. Here, the hierarchical boron (B)‐induced microstructures in B‐doped Si<jats:sub>80</jats:sub>Ge<jats:sub>20</jats:sub> alloys with different B concentrations are investigated to determine their precise effects on thermoelectric properties. By adopting a multi‐scale characterization approach, including X‐ray diffraction, scanning and transmission electron microscopy, and atom probe tomography, five distinctive B‐induced phases within Si<jats:sub>80</jats:sub>Ge<jats:sub>20</jats:sub> alloys are identified. These phases exhibit different sizes, compositions, and crystal structures. Furthermore, their configuration is comprehensively determined according to B doping concentrations to elucidate their consequential impact on the unusual changes in carrier concentration, density‐of‐states effective mass, and lattice thermal conductivity. The study provides insights into the intricate relationship between hierarchical dopant‐induced microstructures and thermoelectric properties and highlights the importance of investigating all‐scale microstructures in excessively‐doped systems for determining the precise structure‐property relationships.</jats:p>