Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Niemeyer, Christof M.

  • Google
  • 10
  • 35
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Engineering Phi29‐DNAP Variants for Customized DNA Hydrogel Materialscitations
  • 2024Quantitative Characterization of RCA‐based DNA Hydrogels – Towards Rational Design2citations
  • 2024Solvent‐Independent 3D Printing of Organogels1citations
  • 2024Micromechanical Indentation Platform for Rapid Analysis of Viscoelastic Biomolecular Hydrogels3citations
  • 2023Accurate quantification of DNA content in DNA hydrogels prepared by rolling circle amplification7citations
  • 2022Systematic evaluation of agarose- and agar-based bioinks for extrusion-based bioprinting of enzymatically active hydrogels20citations
  • 2021Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression10citations
  • 2020Postsynthetic Functionalization of DNA‐Nanocomposites with Proteins Yields Bioinstructive Matrices for Cell Culture Applications19citations
  • 2019Bottom‐Up Assembly of DNA–Silica Nanocomposites into Micrometer‐Sized Hollow Spheres1citations
  • 2017DNA-SMART18citations

Places of action

Chart of shared publication
Lemke, Phillip
3 / 3 shared
Gaspers, Philipp
1 / 1 shared
Domínguez, Carmen M.
6 / 6 shared
Delavault, André
1 / 3 shared
Rabe, Kersten S.
7 / 7 shared
Stoev, Iliya
1 / 1 shared
Moench, Svenja A.
1 / 1 shared
Weisser, Julia
1 / 1 shared
Kuzina, Mariia A.
1 / 1 shared
Wilhelm, Manfred
1 / 39 shared
Levkin, Pavel A.
1 / 5 shared
Mandsberg, Nikolaj Kofoed
1 / 8 shared
Hoffmann, Maxi
1 / 4 shared
Moench, Svenja
2 / 2 shared
Jäger, Paula S.
1 / 1 shared
Oelschlaeger, Claude
3 / 7 shared
Schneider, Leonie
1 / 1 shared
Richter, Madleen
1 / 1 shared
Hubbuch, Jürgen
1 / 12 shared
Wenger, Lukas
1 / 1 shared
Kollmann, Max
1 / 1 shared
Gerisch, Eva
1 / 1 shared
Radtke, Carsten P.
1 / 1 shared
Hu, Yong
3 / 3 shared
Schipperges, Alessa
1 / 1 shared
Reith, Johannes
1 / 1 shared
Weigel, Simone
1 / 2 shared
Ordoñez-Rueda, Diana
1 / 1 shared
Christ, Sophina
1 / 1 shared
Grösche, Maximilian
1 / 1 shared
Sheshachala, Sahana
1 / 2 shared
Willenbacher, Norbert
1 / 27 shared
Schneider, Ann-Kathrin
1 / 1 shared
Nikolov, Pavel M.
1 / 2 shared
Giselbrecht, Stefan
1 / 14 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017

Co-Authors (by relevance)

  • Lemke, Phillip
  • Gaspers, Philipp
  • Domínguez, Carmen M.
  • Delavault, André
  • Rabe, Kersten S.
  • Stoev, Iliya
  • Moench, Svenja A.
  • Weisser, Julia
  • Kuzina, Mariia A.
  • Wilhelm, Manfred
  • Levkin, Pavel A.
  • Mandsberg, Nikolaj Kofoed
  • Hoffmann, Maxi
  • Moench, Svenja
  • Jäger, Paula S.
  • Oelschlaeger, Claude
  • Schneider, Leonie
  • Richter, Madleen
  • Hubbuch, Jürgen
  • Wenger, Lukas
  • Kollmann, Max
  • Gerisch, Eva
  • Radtke, Carsten P.
  • Hu, Yong
  • Schipperges, Alessa
  • Reith, Johannes
  • Weigel, Simone
  • Ordoñez-Rueda, Diana
  • Christ, Sophina
  • Grösche, Maximilian
  • Sheshachala, Sahana
  • Willenbacher, Norbert
  • Schneider, Ann-Kathrin
  • Nikolov, Pavel M.
  • Giselbrecht, Stefan
OrganizationsLocationPeople

article

Solvent‐Independent 3D Printing of Organogels

  • Niemeyer, Christof M.
  • Domínguez, Carmen M.
  • Kuzina, Mariia A.
  • Wilhelm, Manfred
  • Levkin, Pavel A.
  • Mandsberg, Nikolaj Kofoed
  • Hoffmann, Maxi
Abstract

Organogels are polymer networks extended by a liquid organic phase, offering a wide range of properties due to the many combinations of polymer networks, solvents, and shapes achievable through 3D printing. However, current printing methods limit solvent choice and composition, which in turn limits organogels' properties, applications, and potential for innovation. As a solution, a method for solvent-independent printing of 3D organogel structures is presented. In this method, the printing step is decoupled from the choice of solvent, allowing access to the full spectrum of solvent diversity, thereby significantly expanding the range of achievable properties in organogel structures. With no changes to the polymer network, the 3D geometry, or the printing methodology itself, the choice of solvent alone is shown to have an enormous impact on organogel properties. As demonstrated, it can modulate the thermo-mechanical properties of the organogels, both shifting and extending their thermal stability range to span from -30 to over 100 °C. The choice of solvent can also transition the organogels from highly adhesive to extremely slippery. Finally, the method also improves the surface smoothness of prints. Such advances have potential applications in soft robotics, actuators, and sensors, and represent a versatile approach to expanding the functionality of 3D-printed organogels.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • phase