Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vij, Jagdish K.

  • Google
  • 2
  • 9
  • 11

Trinity College Dublin

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Dielectric Engineering of Perovskite BaMnO<sub>3</sub> for the Rapid Heterogeneous Nucleation of Pt Nanoparticles for Catalytic Applicationscitations
  • 2021The beauty of twist-bend nematic phase: Fast switching domains, first order fréedericksz transition and a hierarchy of structures11citations

Places of action

Chart of shared publication
Hughes, Lucia
1 / 1 shared
Downing, Clive
1 / 2 shared
Yadav, Neelam
1 / 2 shared
Roy, Ahin
1 / 2 shared
Browne, Michelle P.
1 / 3 shared
Nicolosi, Valeria
1 / 40 shared
Panov, Vitaly P.
1 / 1 shared
Song, Jang Kun
1 / 1 shared
Mehl, Georg H.
1 / 9 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Hughes, Lucia
  • Downing, Clive
  • Yadav, Neelam
  • Roy, Ahin
  • Browne, Michelle P.
  • Nicolosi, Valeria
  • Panov, Vitaly P.
  • Song, Jang Kun
  • Mehl, Georg H.
OrganizationsLocationPeople

article

Dielectric Engineering of Perovskite BaMnO<sub>3</sub> for the Rapid Heterogeneous Nucleation of Pt Nanoparticles for Catalytic Applications

  • Hughes, Lucia
  • Downing, Clive
  • Yadav, Neelam
  • Roy, Ahin
  • Vij, Jagdish K.
  • Browne, Michelle P.
  • Nicolosi, Valeria
Abstract

<jats:title>Abstract</jats:title><jats:p>Microwave heating provides a rapid method for the heterogeneous nucleation of noble metal particles on perovskite support materials for electrocatalytic purposes. To succeed, dielectric tuning of perovskite materials becomes fundamental. Herein, the dielectric engineering of the BaMnO<jats:sub>3</jats:sub> perovskite system is carried out through the use of B‐site doping to give BaTi<jats:sub>0.5</jats:sub>Mn<jats:sub>0.5</jats:sub>O<jats:sub>3</jats:sub>. Using a combination of atomic‐scale imaging and electron energy loss spectroscopy (EELS), the preferential filling of the M1 and M3 B‐sites with Mn and Ti ions in the 12R‐rhombohedral perovskite structure is established. While the addition of Ti in the BaMnO<jats:sub>3</jats:sub> system has no detrimental effects on the presence of the oxygen reduction reaction (ORR) active Mn<jats:sup>3+</jats:sup> states at the surface, it does alter the dielectric constant and loss tangent, thus facilitating the heterogeneous nucleation of Pt nanoparticles on BaTi<jats:sub>0.5</jats:sub>Mn<jats:sub>0.5</jats:sub>O<jats:sub>3</jats:sub> via rapid microwave heating. Higher Pt loading regimes are found to increase the size and aggregation of the nucleated particles, thus reducing their ORR activity. Therefore, lower Pt loading not only reduces costs but improves overall activity. This work represents future possibilities for the dielectric engineering of perovskite and similar support materials to aid in the quick and easy formation of stable noble metal‐support catalytic systems.</jats:p>

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • surface
  • Oxygen
  • dielectric constant
  • electron energy loss spectroscopy