Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Elliott, Mark

  • Google
  • 1
  • 10
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Electro‐Conductive Ti<sub>3</sub>C<sub>2</sub> MXene Multilayered Membranes: Dye Removal and Antifouling Performance20citations

Places of action

Chart of shared publication
Rahimpour, Ahmad
1 / 1 shared
Keller, Robert
1 / 3 shared
Wessling, Matthias
1 / 35 shared
Vecitis, Chad D.
1 / 1 shared
Mohseni, Mojtaba
1 / 3 shared
Firouzjaei, Mostafa Dadashi
1 / 1 shared
Rastgar, Masoud
1 / 1 shared
Zandi, Zahra
1 / 1 shared
Dilokekunakul, Waralee
1 / 1 shared
Anasori, Babak
1 / 10 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Rahimpour, Ahmad
  • Keller, Robert
  • Wessling, Matthias
  • Vecitis, Chad D.
  • Mohseni, Mojtaba
  • Firouzjaei, Mostafa Dadashi
  • Rastgar, Masoud
  • Zandi, Zahra
  • Dilokekunakul, Waralee
  • Anasori, Babak
OrganizationsLocationPeople

article

Electro‐Conductive Ti<sub>3</sub>C<sub>2</sub> MXene Multilayered Membranes: Dye Removal and Antifouling Performance

  • Rahimpour, Ahmad
  • Keller, Robert
  • Elliott, Mark
  • Wessling, Matthias
  • Vecitis, Chad D.
  • Mohseni, Mojtaba
  • Firouzjaei, Mostafa Dadashi
  • Rastgar, Masoud
  • Zandi, Zahra
  • Dilokekunakul, Waralee
  • Anasori, Babak
Abstract

<jats:title>Abstract</jats:title><jats:p>This work describes the fabrication of a novel electroconductive membrane made of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> (MXene) nanosheet coating through a one‐step pressure‐assisted technique. Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>‐MXene is firmly attached over a polyamide–imide (PAI) microfilter by employing a binder composed of carboxymethyl cellulose (CMC)/glutaraldehyde (GA). Through coating a proper amount of multilayer Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>‐MXene, the electrical conductivity of 174 ± 0.16 S m<jats:sup>−1</jats:sup> is achieved. The rejection rates of reactive red 120 (RR120), reactive black (RB), and methyl orange (MO) by the pristine PAI membrane are 45.2%, 40.81%, and 33.65%, respectively. However, rejection rates significantly improve with the Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene coating to over 99.71%, 97.95%, and 68.91% for RR120, RB, and MO. Applying a 4 V cathodic potential resulted in a flux recovery ratio (FRR) of 99.83% and a flux decline rate (FDR) of less than 1% during humic acid (HA) filtration. Without applying voltage, the MXene‐coated membrane shows an FRR and FDR of 92.51% and 45.56%, respectively. Surface energy analysis reveals strong repulsive interactions between foulants and the membrane surface. Moreover, the surface free energy indicates that foulants such as sodium alginate (SA) and bovine serum albumin (BSA) exhibit stronger adhesion to the membrane than HA, consistent with the fouling experiment results.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • reactive
  • laser emission spectroscopy
  • Sodium
  • cellulose
  • electrical conductivity
  • surface energy