Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aabrar, Khandker Akif

  • Google
  • 1
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024MAX Phase Ti<sub>2</sub>AlN for HfO<sub>2</sub> Memristors with Ultra‐Low Reset Current Density and Large On/Off Ratio5citations

Places of action

Chart of shared publication
Graham, Samuel
1 / 6 shared
Tian, Mengkun
1 / 6 shared
Vogel, Eric
1 / 1 shared
Kumar, Satish
1 / 21 shared
Datta, Suman
1 / 1 shared
Athena, Fabia Farlin
1 / 1 shared
Buchmaier, Wolfgang
1 / 1 shared
Nnaji, Moses
1 / 1 shared
Vaca, Diego
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Graham, Samuel
  • Tian, Mengkun
  • Vogel, Eric
  • Kumar, Satish
  • Datta, Suman
  • Athena, Fabia Farlin
  • Buchmaier, Wolfgang
  • Nnaji, Moses
  • Vaca, Diego
OrganizationsLocationPeople

article

MAX Phase Ti<sub>2</sub>AlN for HfO<sub>2</sub> Memristors with Ultra‐Low Reset Current Density and Large On/Off Ratio

  • Graham, Samuel
  • Tian, Mengkun
  • Vogel, Eric
  • Kumar, Satish
  • Datta, Suman
  • Athena, Fabia Farlin
  • Aabrar, Khandker Akif
  • Buchmaier, Wolfgang
  • Nnaji, Moses
  • Vaca, Diego
Abstract

<jats:title>Abstract</jats:title><jats:p>A Ti<jats:sub>2</jats:sub>AlN MAX phase layered thin film electrode and oxygen getter layer for HfO<jats:sub>2</jats:sub>‐based two‐terminal memristors is presented. The Ti<jats:sub>2</jats:sub>AlN/HfO<jats:sub>x</jats:sub>/Ti memristor devices exhibit enhanced resistive switching performance, including an ultra‐low reset current density (&lt; 10<jats:sup>−8</jats:sup> M<jats:bold>Ω</jats:bold> cm<jats:sup>2</jats:sup>), substantial on‐off ratio (≈ 6000), excellent multi‐level functionality (≈ 9 distinct states), impressive retention (up to 300 °C), and robust endurance (&gt;200 million) as compared to conventional TiN and other alternative materials based memristors. Experimental measurements and modeling suggest that the distinctive combination of low thermal conductivity, high electrical conductivity, and unique ultra‐thin layer‐by‐layer structure of the Ti<jats:sub>2</jats:sub>AlN MAX phase thin film contribute to this exceptional performance with good reproducibility and stability. The results demonstrate for the first‐time the potential of this innovative sputtered MAX phase material for engineering energy‐efficient, high‐density non‐volatile digital, and analog memory devices aimed toward next‐generation sustainable artificial intelligence.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • thin film
  • Oxygen
  • layered
  • current density
  • tin
  • thermal conductivity
  • electrical conductivity