Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kuhn, Meike

  • Google
  • 1
  • 13
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Design Principles of Diketopyrrolopyrrole‐Thienopyrrolodione Acceptor<sub>1</sub>–Acceptor<sub>2</sub> Copolymers1citations

Places of action

Chart of shared publication
Thelakkat, Mukundan
1 / 14 shared
Goel, Mahima
1 / 2 shared
Erhardt, Andreas
1 / 2 shared
Prendergast, David
1 / 4 shared
Thomsen, Lars
1 / 20 shared
Müller, Christian J.
1 / 3 shared
Medhekar, Nikhil V.
1 / 1 shared
Hochgesang, Adrian
1 / 2 shared
Roychoudhury, Subhayan
1 / 1 shared
Herzig, Eva M.
1 / 25 shared
Huynh, Thanh Tung
1 / 1 shared
Chantler, Paul
1 / 2 shared
Hungenberg, Julian
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Thelakkat, Mukundan
  • Goel, Mahima
  • Erhardt, Andreas
  • Prendergast, David
  • Thomsen, Lars
  • Müller, Christian J.
  • Medhekar, Nikhil V.
  • Hochgesang, Adrian
  • Roychoudhury, Subhayan
  • Herzig, Eva M.
  • Huynh, Thanh Tung
  • Chantler, Paul
  • Hungenberg, Julian
OrganizationsLocationPeople

article

Design Principles of Diketopyrrolopyrrole‐Thienopyrrolodione Acceptor<sub>1</sub>–Acceptor<sub>2</sub> Copolymers

  • Thelakkat, Mukundan
  • Goel, Mahima
  • Erhardt, Andreas
  • Prendergast, David
  • Thomsen, Lars
  • Müller, Christian J.
  • Medhekar, Nikhil V.
  • Hochgesang, Adrian
  • Roychoudhury, Subhayan
  • Herzig, Eva M.
  • Huynh, Thanh Tung
  • Chantler, Paul
  • Kuhn, Meike
  • Hungenberg, Julian
Abstract

<jats:title>Abstract</jats:title><jats:p>The design principles of acceptor<jats:sub>1</jats:sub>–acceptor<jats:sub>2</jats:sub> copolymers featuring alternating diketopyrrolopyrrole (DPP) and thienopyrrolodione (TPD) moieties are investigated. The investigated series of polymers is obtained by varying the aromatic linker between the two acceptor motifs between thiophene, thiazole, pyridine, and benzene. High electron affinities between 3.96 and 4.42 eV, facilitated by the synergy of the acceptor motifs are determined with optical gaps between 1.37 and 2.02 eV. Grazing incidence wide‐angle X‐ray scattering studies reveal a range of film morphologies after thermal annealing, including face‐on, end‐on and superstructure edge‐on‐like crystallites. Conversely, all materials form thin edge‐on layers on the polymer–air interface, as demonstrated by multi‐elemental near‐edge X‐ray absorption fine‐structure spectroscopy. The benefit of the electron‐deficient linkers thiazole and pyridine is evident: In organic field effect transistors, electron mobilities of up to 4.6 × 10<jats:sup>−2</jats:sup> cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> are obtained with outstanding on/off current ratios of 5 × 10<jats:sup>5</jats:sup>, facilitated by the absence of detectable hole transport in these materials. Viability for all‐polymer solar cells is assessed in active layer blends with the donor polymer PM6, yielding a maximum average power conversion efficiency of 4.8% and an open circuit voltage above 1 V.</jats:p>

Topics
  • impedance spectroscopy
  • annealing
  • copolymer
  • power conversion efficiency