People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thelakkat, Mukundan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Controlling crystal orientation in films of conjugated polymers by tuning the surface energy
- 2024Design Principles of Diketopyrrolopyrrole‐Thienopyrrolodione Acceptor<sub>1</sub>–Acceptor<sub>2</sub> Copolymerscitations
- 2021Solid polymer nanocomposite electrolytes with improved interface properties towards lithium metal battery application at room temperaturecitations
- 2021Roadmap on organic-inorganic hybrid perovskite semiconductors and devicescitations
- 2020HOMO–HOMO Electron Transfer: An Elegant Strategy for p‐Type Doping of Polymer Semiconductors toward Thermoelectric Applicationscitations
- 2017Influence of fluorination on the microstructure and performance of diketopyrrolopyrrole‐based polymer solar cellscitations
- 2017Hybrid Photovoltaics – from Fundamentals towards Applicationcitations
- 2017Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells
- 2017Influence of fluorination on the microstructure and performance of diketopyrrolopyrrole-based polymer solar cellscitations
- 2016EDOT-diketopyrrolopyrrole copolymers for polymer solar cellscitations
- 2016Azido-Functionalized Thiophene as a Versatile Building Block to Cross-Link Low-Bandgap Polymerscitations
- 2013Hierarchical orientation of crystallinity by block-copolymer patterning and alignment in an electric fieldcitations
- 2012Semiconductor amphiphilic block copolymers for hybrid donor-acceptor nanocompositescitations
- 2007Local potential distribution of macrophase separated polymer blend domainscitations
Places of action
Organizations | Location | People |
---|
article
Design Principles of Diketopyrrolopyrrole‐Thienopyrrolodione Acceptor<sub>1</sub>–Acceptor<sub>2</sub> Copolymers
Abstract
<jats:title>Abstract</jats:title><jats:p>The design principles of acceptor<jats:sub>1</jats:sub>–acceptor<jats:sub>2</jats:sub> copolymers featuring alternating diketopyrrolopyrrole (DPP) and thienopyrrolodione (TPD) moieties are investigated. The investigated series of polymers is obtained by varying the aromatic linker between the two acceptor motifs between thiophene, thiazole, pyridine, and benzene. High electron affinities between 3.96 and 4.42 eV, facilitated by the synergy of the acceptor motifs are determined with optical gaps between 1.37 and 2.02 eV. Grazing incidence wide‐angle X‐ray scattering studies reveal a range of film morphologies after thermal annealing, including face‐on, end‐on and superstructure edge‐on‐like crystallites. Conversely, all materials form thin edge‐on layers on the polymer–air interface, as demonstrated by multi‐elemental near‐edge X‐ray absorption fine‐structure spectroscopy. The benefit of the electron‐deficient linkers thiazole and pyridine is evident: In organic field effect transistors, electron mobilities of up to 4.6 × 10<jats:sup>−2</jats:sup> cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> are obtained with outstanding on/off current ratios of 5 × 10<jats:sup>5</jats:sup>, facilitated by the absence of detectable hole transport in these materials. Viability for all‐polymer solar cells is assessed in active layer blends with the donor polymer PM6, yielding a maximum average power conversion efficiency of 4.8% and an open circuit voltage above 1 V.</jats:p>