Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ranieri, Umbertoluca

  • Google
  • 2
  • 32
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024High‐Pressure Synthesis of Ultra‐Incompressible, Hard and Superconducting Tungsten Nitrides9citations
  • 2023Structure determination of ζ-N2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogen7citations

Places of action

Chart of shared publication
Bright, Eleanor Lawrence
2 / 6 shared
Spender, James
2 / 2 shared
Laniel, Dominique
2 / 15 shared
Trybel, Florian
2 / 5 shared
Glazyrin, Konstantin
1 / 41 shared
Prakapenka, Vitali B.
1 / 18 shared
Chariton, Stella
1 / 23 shared
Fedotenko, Timofey
1 / 29 shared
Dubrovinskaia, Natalia
1 / 26 shared
Dubrovinsky, Leonid
1 / 47 shared
Aslandukov, Andrii
1 / 3 shared
Abrikosov, Igor
1 / 58 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Bright, Eleanor Lawrence
  • Spender, James
  • Laniel, Dominique
  • Trybel, Florian
  • Glazyrin, Konstantin
  • Prakapenka, Vitali B.
  • Chariton, Stella
  • Fedotenko, Timofey
  • Dubrovinskaia, Natalia
  • Dubrovinsky, Leonid
  • Aslandukov, Andrii
  • Abrikosov, Igor
OrganizationsLocationPeople

article

High‐Pressure Synthesis of Ultra‐Incompressible, Hard and Superconducting Tungsten Nitrides

  • Si, Jianguo
  • Mcwilliams, Ryan Stewart
  • Ranieri, Umbertoluca
  • Schnick, Wolfgang
  • Giordano, Nico
  • Bright, Eleanor Lawrence
  • Liang, Akun
  • Shi, Lanting
  • Brüning, Lukas
  • Spender, James
  • Yin, Yuqing
  • Stevens, Callum R.
  • Parra, Samuel Gallego
  • Akbar, Fariia Iasmin
  • Huxley, Andrew
  • Gregoryanz, Eugene
  • Aslandukov, Andrey
  • Peña Alvarez, Miriam
  • Osmond, Israel
  • Laniel, Dominique
  • Tasnadi, Ferenc
  • Bykov, Maxim
  • Trybel, Florian
  • Krach, Georg
  • Massani, Bernhard
Abstract

<jats:title>Abstract</jats:title><jats:p>Transition metal nitrides, particularly those of 5<jats:italic>d</jats:italic> metals, are known for their outstanding properties, often relevant for industrial applications. Among these metal elements, tungsten is especially attractive given its low cost. In this high‐pressure investigation of the W–N system, two novel ultra‐incompressible tungsten nitride superconductors, namely W<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> and W<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub>, are successfully synthesized at 35 and 56 GPa, respectively, through a direct reaction between N<jats:sub>2</jats:sub> and W in laser‐heated diamond anvil cells. Their crystal structure is determined using synchrotron single‐crystal X‐ray diffraction. While the W<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> solid's sole constituting nitrogen species are N<jats:sup>3‐</jats:sup> units, W<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> features both discrete N<jats:sup>3‐</jats:sup> as well as N<jats:sub>2</jats:sub><jats:sup>4‐</jats:sup> pernitride anions. The bulk modulus of W<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> and W<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> is experimentally determined to be 380(3) and 406(7) GPa, and their ultra‐incompressible behavior is rationalized by their constituting WN<jats:sub>7</jats:sub> polyhedra and their linkages. Importantly, both W<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> and W<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> are recoverable to ambient conditions and stable in air. Density functional theory calculations reveal W<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> and W<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> to have a Vickers hardness of 30 and 34 GPa, and superconducting transition temperatures at ambient pressure (50 GPa) of 11.6 K (9.8 K) and 9.4 K (7.2 K), respectively. Additionally, transport measurements performed at 50 GPa on W<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> corroborate with the calculations.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • Nitrogen
  • nitride
  • hardness
  • density functional theory
  • tungsten
  • bulk modulus