People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Jian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Rear Surface Passivation for Ink-Based, Submicron CuIn(S, Se)2 Solar Cellscitations
- 2024Electrically Programmed Doping Gradients Optimize the Thermoelectric Power Factor of a Conjugated Polymercitations
- 2024Electrically Programmed Doping Gradients Optimize the Thermoelectric Power Factor of a Conjugated Polymercitations
- 2022Charge transport in doped conjugated polymers for organic thermoelectricscitations
- 2022A method for identifying the cause of inefficient salt-doping in organic semiconductorscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2021Modeling the Effect of Prestressing on the Ultimate Behavior of Deep-to-Slender Concrete Beams ; Belgium
- 2020N-type organic thermoelectrics:demonstration of ZT > 0.3citations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020Insights into the structure−activity relationships in metal−Organic framework-supported nickel catalysts for ethylene hydrogenationcitations
- 2020N-type organic thermoelectricscitations
- 2019Two-Parameter Kinematic Approach for complete Shear Behaviour of Deep FRC Beamscitations
- 2019Structural properties of protective diamond-like-carbon thin films grown on multilayer graphenecitations
- 2018Advantages of Yolk Shell Catalysts for the DRM: A Comparison of Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3.citations
- 2018Beyond the Active Sitecitations
- 2017N-Type Organic Thermoelectrics:Improved Power Factor by Tailoring Host-Dopant Miscibilitycitations
- 2017N-Type Organic Thermoelectricscitations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2009Enhanced infrared emission from colloidal HgTe nanocrystal quantum dots on silicon-on-insulator photonic crystalscitations
Places of action
Organizations | Location | People |
---|
article
Electrically Programmed Doping Gradients Optimize the Thermoelectric Power Factor of a Conjugated Polymer
Abstract
<jats:title>Abstract</jats:title><jats:p>Functionally graded materials (FGMs) are widely explored in the context of inorganic thermoelectrics, but not yet in organic thermoelectrics. Here, the impact of doping gradients on the thermoelectric properties of a chemically doped conjugated polymer is studied. The in‐plane drift of counterions in moderate electric fields is used to create lateral doping gradients in films composed of a polythiophene with oligoether side chains, doped with 2,3,5,6‐tetrafluoro‐tetracyanoquinodimethane (F<jats:sub>4</jats:sub>TCNQ). Raman microscopy reveals that a bias voltage of as little as 5 V across a 50 µm wide channel is sufficient to trigger counterion drift, resulting in doping gradients. The effective electrical conductivity of the graded channel decreases with bias voltage, while an overall increase in Seebeck coefficient is observed, yielding an up to eight‐fold enhancement in power factor. Kinetic Monte Carlo simulations of graded films explain the increase in power factor in terms of a roll‐off of the Seebeck coefficient at high electrical conductivities in combination with a mobility decay due to increased Coulomb scattering at high dopant concentrations. Therefore, the FGM concept is found to be a way to improve the thermoelectric performance of not yet optimally doped organic semiconductors, which may ease the screening of new materials as well as the fabrication of devices.</jats:p>