People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kowalski, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Tribological Properties of Selected Ionic Liquids in Lubricated Friction Nodescitations
- 2023Monolithic High Contrast Grating Integrated with Metal: Infrared Electrode with Exceptionally High Conductivity and Transmissioncitations
- 2023TRIBOLOGICAL TESTING OF ENVIRONMENTALLY FRIENDLYLUBRICANTS
- 2021Tribocorrosion Performance of Cr/CrN Hybrid Layer as a Coating for Machine Components Used in a Chloride Ions Environmentcitations
Places of action
Organizations | Location | People |
---|
article
Monolithic High Contrast Grating Integrated with Metal: Infrared Electrode with Exceptionally High Conductivity and Transmission
Abstract
<jats:title>Abstract</jats:title><jats:p>The design of transparent conductive electrodes (TCEs) for optoelectronic devices requires a trade‐off between high conductivity and transmittivity, limiting their efficiency. This paper demonstrates the best ever achieved TCEs with the novel approach to fabricating TCEs that effectively alleviates this trade‐off: a monolithic high contrast grating integrated with metal (metalMHCG). The metalMHCG enables higher electrical conductivity than other TCEs, while providing transmissive and antireflective properties. It focuses on infrared spectrum TCEs, which are essential for sensing, thermal imaging, and automotive applications. However, due to elevated free carrier absorption, they are much more demanding than TCEs for the visible spectrum. It demonstrates a record 75% absolute transmittiance of unpolarized light, resulting in a record 108% transmittance relative to plain GaAs substrate. It achieves even larger absolute transmittance of polarized light, reaching 92% or 133% relative transmittance. Despite the record high transmittance, the sheet resistance of the metalMHCG is the best ever reported, several times lower than any other TCE, ranging from 0.5 to 1 Ω Sq<jats:sup>−1</jats:sup>.</jats:p>