People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spangenberg, Arnaud
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Surface Modification of 3D‐Printed Micro‐ and Macro‐Structures via In Situ Nitroxide‐Mediated Radical Photopolymerizationcitations
- 2023Customizable and Reconfigurable Surface Properties of Printed Micro‐objects by 3D Direct Laser Writing via Nitroxide Mediated Photopolymerizationcitations
- 2023Customizable and Reconfigurable Surface Properties of Printed Micro‐objects by 3D Direct Laser Writing via Nitroxide Mediated Photopolymerizationcitations
- 2023Surface Modification of 3D‐Printed Micro‐ and Macro‐Structures via In Situ Nitroxide‐Mediated Radical Photopolymerizationcitations
- 2023Very High-Aspect-Ratio Polymeric Micropillars Made by Two-Photon Polymerizationcitations
- 2022Investigation of two-photon polymerized microstructures using fluorescence lifetime measurementscitations
- 2022On‐Demand Editing of Surface Properties of Microstructures Made by 3D Direct Laser Writing via Photo‐Mediated RAFT Polymerizationcitations
- 2022On‐Demand Editing of Surface Properties of Microstructures Made by 3D Direct Laser Writing via Photo‐Mediated RAFT Polymerizationcitations
- 2021Tuning nanomechanical properties of microstructures made by 3D direct laser writingcitations
- 2021Water‐Soluble Photoinitiators from Dimethylamino‐Substituted Monoacylphosphine Oxide for Hydrogel and Latex Preparationcitations
- 2020Laser direct writing of arbitrary complex polymer microstructures by nitroxide-mediated photopolymerizationcitations
- 2018Direct Laser Writing of Crystallized TiO 2 and TiO 2 /Carbon Microstructures with Tunable Conductive Propertiescitations
- 20163D molecularly imprinted polymer sensors synthesized by 2-photon stereolithography
- 2016Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithographycitations
- 2012Enhancement of Two-Photon Initiating Efficiency of a 4,4'-Diaminostyryl-2,2'-bipyridine Derivative Promoted by Complexation with Silver Ionscitations
- 2011Near-infrared photopolymerization: Initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyescitations
- 2011Orienting the Demixion of a Diblock-copolymer Using 193 nm Interferometric Lithography for the Controlled Deposition of Nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Surface Modification of 3D‐Printed Micro‐ and Macro‐Structures via In Situ Nitroxide‐Mediated Radical Photopolymerization
Abstract
<jats:title>Abstract</jats:title><jats:p>Photo‐controlled reversible‐deactivation radical polymerization (RDRP) has recently emerged in light‐based 3D printing at macro‐ and micro‐scales, enabling the elaboration of objects with (re‐)configurable surface properties. The authors' previous work exploits nitroxide‐mediated radical photopolymerization (NMP2) in 3D micro‐printing and subsequent surface modification, by employing analkoxyamine‐based photoresist via 3D direct laser writing (DLW). However, this photoresist suffers from its low photosensitivity to wavelengths above 760 nm, limiting its suitability for commercial 3D DLW setups. To tackle these issues, a new strategy—in situ NMP2 based on a photoresist containing acommercial photoinitiator and a photosensitive‐nitroneis proposed. This photoresist is well‐suited for wavelengths commonly used by 3D DLW systems to obtain well‐defined 3D microstructures. Importantly, the in‐situ formation of alkoxyamine during fabrication allows photo‐induced surface modification of microstructures, highlighted by precise and successive surface patterning. Thesurface modification can be conducted at 800 nm or at wavelengths up to 860 nm. Subsequently, the impact of light wavelength and intensity isinvestigated to understand surface modification. The simple preparation of this novel photoresist allows facile adaptation to digital light processing for 3D macro‐printing. This work broadens the scope of photo‐controlled RDRP in 3D printing and greatly facilitates “living” 3D micro‐ and macro‐printing.</jats:p>