Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Franck, Christian M.

  • Google
  • 1
  • 15
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Palladium Zinc Nanocrystals: Nanoscale Amalgamation Enables Multifunctional Intermetallic Colloids2citations

Places of action

Chart of shared publication
Clarysse, Jasper
1 / 1 shared
Schenk, Florian M.
1 / 1 shared
Moser, Annina
1 / 1 shared
Chang, Chunwei
1 / 1 shared
Müller, Christoph R.
1 / 4 shared
Egüz, Eda
1 / 1 shared
Vemulapalli, Hanut
1 / 1 shared
Edison, Eldho
1 / 2 shared
Wood, Vanessa
1 / 14 shared
Niederberger, Markus
1 / 15 shared
Kuznetsov, Denis A.
1 / 1 shared
Yarema, Olesya
1 / 6 shared
Mittal, Neeru
1 / 4 shared
Yarema, Maksym
1 / 26 shared
Wu, Yihsuan
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Clarysse, Jasper
  • Schenk, Florian M.
  • Moser, Annina
  • Chang, Chunwei
  • Müller, Christoph R.
  • Egüz, Eda
  • Vemulapalli, Hanut
  • Edison, Eldho
  • Wood, Vanessa
  • Niederberger, Markus
  • Kuznetsov, Denis A.
  • Yarema, Olesya
  • Mittal, Neeru
  • Yarema, Maksym
  • Wu, Yihsuan
OrganizationsLocationPeople

article

Palladium Zinc Nanocrystals: Nanoscale Amalgamation Enables Multifunctional Intermetallic Colloids

  • Clarysse, Jasper
  • Schenk, Florian M.
  • Moser, Annina
  • Chang, Chunwei
  • Müller, Christoph R.
  • Egüz, Eda
  • Vemulapalli, Hanut
  • Edison, Eldho
  • Wood, Vanessa
  • Niederberger, Markus
  • Kuznetsov, Denis A.
  • Yarema, Olesya
  • Mittal, Neeru
  • Yarema, Maksym
  • Wu, Yihsuan
  • Franck, Christian M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Intermetallic nanocrystals are emerging materials for energy, catalysis, and biomedical applications, but combining two or more metals at the nanoscale remains challenging. The amalgamation reaction represents a convenient method for hundreds of intermetallic compositions, as it relies on fast and efficient alloying of liquid metals into presynthesized metallic seeds. Here, Pd–Zn nanocrystals, prepared via Zn amide thermolysis on the surface of Pd nanocrystals and subsequent amalgamation alloying, are investigated. Size‐uniform nanocrystals and control over a wide range of Pd–Zn compositions are achieved. This allows deriving a phase diagram at the nanoscale, in which miscibility gaps and three phases with broad solid solutions are detected. Furthermore, the formation of homogeneous ZnO shells for Pd–Zn compositions extending beyond phase solubility limits is observed. Full chemistry control for Pd–Zn nanocrystals enables a rational choice of materials for selected energy applications, achieveing an extended lifetime of Zn‐ion batteries for Zn‐rich PdZn<jats:sub>2</jats:sub> stoichiometry, superior electrocatalytic properties for nearly stoichiometric PdZn halite phase, and the stability and efficiency of high‐voltage cathodes benefiting from ZnO shell protection around Pd<jats:sub>3</jats:sub>Zn<jats:sub>10</jats:sub> nanocrystals are reported. This paper exemplifies the multifunctionality of intermetallics Pd–Zn nanocrystals, while this methodology can be extended to many other bimetallic nanomaterials.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • zinc
  • intermetallic
  • phase diagram
  • thermolysis
  • palladium