People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cardinaels, Ruth M.
KU Leuven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extensioncitations
- 2024In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer compositescitations
- 2024A monolithic numerical model to predict the EMI shielding performance of lossy dielectric polymer nanocomposite shields in a rectangular waveguidecitations
- 2023A generalized mechano-statistical transient network model for unravelling the network topology and elasticity of hydrophobically associating multiblock copolymers in aqueous solutionscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanescitations
- 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterizationcitations
- 2021Bio‐Based Poly(3‑hydroxybutyrate)/Thermoplastic Starch Composites as a Host Matrix for Biochar Fillerscitations
- 2020A filament stretching rheometer for in situ X-ray experimentscitations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Polymer spheres
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations
- 2019Laser sintering of polymer particle pairs studied by in-situ visualizationcitations
- 2018Thin film mechanical characterization of UV-curing acrylate systemscitations
- 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-bandcitations
- 2017Future nanocomposites : exploring multifunctional multi-layered architectures
- 2017Experimental setup for in situ visualization studies of laser sintering of polymer particles
Places of action
Organizations | Location | People |
---|
article
Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuators
Abstract
<p>Untethered soft fiber actuators are advancing toward next-generation artificial muscles, with rotating polymer fibers allowing controlled rotational deformations and contractions accompanied by torque and longitudinal forces. Current approaches, however, are based either on non-recyclable and non-reprogrammable thermosets, exhibit rotational deformations and torques with inadequate actuation performance, or involve intricate multistep processing and photopolymerization impeding scalable fabrication and manufacturing of millimeter-thick fibers. Here, the melt-extrusion and drawing of a 50 m long thermoplastic liquid crystal elastomer fiber with a ≈1.3 mm diameter on a large scale is reported. With the responsive thermoplastic material, rotating actuators are fabricated via easily exploited programming freedom resulting in large, reversible rotational deformations and torques. The actuation performance of the twisted fibers may be controlled by the programmed twisting density without complicated preparation steps or photocuring being required. The thermoplastic behavior enables fabrication of plied fibers, demonstrated as a triple helical twisted rope constructed from individual rotating fibers delivering up to three times as great rotational and longitudinal forces capable of reversibly opening and lifting a screw cap vial. Besides the programmability, the thermoplastic material employed lends itself to be completely reprocessed into other configurations with self-healing properties in contrast to thermosets.</p>