Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brune, Oliver

  • Google
  • 1
  • 10
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping13citations

Places of action

Chart of shared publication
Grötzner, Gabriel
1 / 1 shared
Pollastri, Simone
1 / 3 shared
Munnik, Frans
1 / 16 shared
Wagner, Laura I.
1 / 2 shared
Sharp, Ian
1 / 6 shared
Eichhorn, Johanna
1 / 5 shared
Sirotti, Elise Ida
1 / 3 shared
Streibel, Verena
1 / 3 shared
Olivi, Luca
1 / 12 shared
Santra, Saswati
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Grötzner, Gabriel
  • Pollastri, Simone
  • Munnik, Frans
  • Wagner, Laura I.
  • Sharp, Ian
  • Eichhorn, Johanna
  • Sirotti, Elise Ida
  • Streibel, Verena
  • Olivi, Luca
  • Santra, Saswati
OrganizationsLocationPeople

article

Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping

  • Grötzner, Gabriel
  • Brune, Oliver
  • Pollastri, Simone
  • Munnik, Frans
  • Wagner, Laura I.
  • Sharp, Ian
  • Eichhorn, Johanna
  • Sirotti, Elise Ida
  • Streibel, Verena
  • Olivi, Luca
  • Santra, Saswati
Abstract

<jats:title>Abstract</jats:title><jats:p>While Ta<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> shows excellent potential as a semiconductor photoanode for solar water splitting, its performance is hindered by poor charge carrier transport and trapping due to native defects that introduce electronic states deep within its bandgap. Here, it is demonstrated that controlled Ti doping of Ta<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> can dramatically reduce the concentration of deep‐level defects and enhance its photoelectrochemical performance, yielding a sevenfold increase in photocurrent density and a 300 mV cathodic shift in photocurrent onset potential compared to undoped material. Comprehensive characterization reveals that Ti<jats:sup>4+</jats:sup> ions substitute Ta<jats:sup>5+</jats:sup> lattice sites, thereby introducing compensating acceptor states, reducing the concentrations of deleterious nitrogen vacancies and reducing Ta<jats:sup>3+</jats:sup> states, and thereby suppressing trapping and recombination. Owing to the similar ionic radii of Ti<jats:sup>4+</jats:sup> and Ta<jats:sup>5+</jats:sup>, substitutional doping does not introduce lattice strain or significantly affect the underlying electronic structure of the host semiconductor. Furthermore, Ti can be incorporated without increasing the oxygen donor content, thereby enabling the electrical conductivity to be tuned by over seven orders of magnitude. Thus, Ti doping of Ta<jats:sub>3</jats:sub>N<jats:sub>5</jats:sub> provides a powerful basis for precisely engineering its optoelectronic characteristics and to substantially improve its functional characteristics as an advanced photoelectrode for solar fuels applications.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • Oxygen
  • semiconductor
  • Nitrogen
  • defect
  • electrical conductivity