Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simeth, Nadja

  • Google
  • 2
  • 12
  • 133

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Efficient, Near‐Infrared Light‐Induced Photoclick Reaction Enabled by Upconversion Nanoparticles9citations
  • 2020General Principles for the Design of Visible‐Light‐Responsive Photoswitches: Tetra‐ ortho ‐Chloro‐Azobenzenes124citations

Places of action

Chart of shared publication
Wu, Kefan
1 / 2 shared
Alachouzos, Georgios
1 / 2 shared
Feringa, Ben L.
1 / 31 shared
Freese, Thomas
1 / 3 shared
Zhang, Hong
1 / 10 shared
Falkowski, Michal
1 / 4 shared
Szymanski, Wiktor
2 / 11 shared
Hansen, Mickel
1 / 1 shared
Budzak, Simon
1 / 3 shared
Feringa, Ben
1 / 1 shared
Jacquemin, Denis
1 / 14 shared
Lameijer, Lucien
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Wu, Kefan
  • Alachouzos, Georgios
  • Feringa, Ben L.
  • Freese, Thomas
  • Zhang, Hong
  • Falkowski, Michal
  • Szymanski, Wiktor
  • Hansen, Mickel
  • Budzak, Simon
  • Feringa, Ben
  • Jacquemin, Denis
  • Lameijer, Lucien
OrganizationsLocationPeople

article

Efficient, Near‐Infrared Light‐Induced Photoclick Reaction Enabled by Upconversion Nanoparticles

  • Wu, Kefan
  • Alachouzos, Georgios
  • Feringa, Ben L.
  • Freese, Thomas
  • Zhang, Hong
  • Simeth, Nadja
  • Falkowski, Michal
  • Szymanski, Wiktor
Abstract

<jats:title>Abstract</jats:title><jats:p>Photoclick reactions combine the selectivity of classical click chemistry with the high precision and spatiotemporal control afforded by light, finding diverse utility in surface customization, polymer conjugation, photocross‐linking, protein labeling, and bioimaging. Nonetheless, UV light, pivotal in prevailing photoclick reactions, poses issues, especially in biological contexts, due to its limited tissue penetration and cell‐toxic nature. Herein, a reliable and versatile strategy of activating the photoclick reactions of 9,10‐phenanthrenequinones (<jats:bold>PQ</jats:bold>s) with electron‐rich alkenes (<jats:bold>ERA</jats:bold>s) with near infrared (NIR) light transduced by spectrally and structurally customized upconversion nanoparticles (<jats:bold>UCNP</jats:bold>s) is introduced. Under NIR irradiation, the <jats:bold>UCNP</jats:bold>s become UV/blue nanoemitters uniformly distributed in the reaction system. Enabled by the customized <jats:bold>UCNP</jats:bold>s, 800 or 980 nm light effectively activates the photocycloaddition reactions via radiative energy transfer in both general and triplet–triplet energy transfer (TTET)‐mediated <jats:bold>PQ‐ERA</jats:bold> systems. In particular, the novel sandwich structure <jats:bold>UCNP</jats:bold>s achieve the click reaction with up to 76% production yield in 10 min under NIR light irradiation. Meanwhile, the tricky side effect of photoclick product absorption‐induced quenching is successfully circumvented from the fine‐tuning of the upconversion spectrum. Moreover, through‐tissue irradiation experiments, the authors show that the <jats:bold>UCNP</jats:bold>‐<jats:bold>PQ‐ERA</jats:bold> reaction unlocks the full potential of photoclick reactions for in vivo applications.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • quenching
  • alkene