Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Villoro, Ruben Bueno

  • Google
  • 3
  • 26
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Grain Boundary Phases in NbFeSb Half‐Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials62citations
  • 2023Laves phases in Mg-Al-Ca alloys and their effect on mechanical propertiescitations
  • 2023Enhancing the Thermoelectric Properties via Modulation of Defects in <i>P</i>‐Type MNiSn‐Based (M = Hf, Zr, Ti) Half‐Heusler Materials19citations

Places of action

Chart of shared publication
Mattlat, Dominique Alexander
1 / 1 shared
Pérez, Nicolás
2 / 6 shared
Naderloo, Raana Hatami
1 / 1 shared
Nielsch, Kornelius
2 / 56 shared
Zhang, Siyuan
3 / 25 shared
Zavanelli, Duncan
1 / 1 shared
Scheu, Christina
3 / 49 shared
Abdellaoui, Lamya
1 / 4 shared
Zubair, Muhammd
1 / 1 shared
Felten, Markus
1 / 5 shared
Vega-Paredes, Miquel
1 / 4 shared
Korte-Kerzel, Sandra
1 / 20 shared
Lipinska-Chwalek, Marta
1 / 4 shared
Hallstedt, Bengt
1 / 7 shared
Zander, Daniela
1 / 7 shared
Springer, Hauke
1 / 25 shared
Berkels, Benjamin
1 / 9 shared
Ayeb, Nadia
1 / 1 shared
Mayer, Joachim
1 / 30 shared
Sotnikov, Andrei
1 / 1 shared
Ai, Xin
1 / 1 shared
Cichocka, Magdalena O.
1 / 1 shared
Lei, Binghua
1 / 1 shared
Giebeler, Lars
1 / 23 shared
Zhang, Qihao
1 / 1 shared
Singh, David J.
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mattlat, Dominique Alexander
  • Pérez, Nicolás
  • Naderloo, Raana Hatami
  • Nielsch, Kornelius
  • Zhang, Siyuan
  • Zavanelli, Duncan
  • Scheu, Christina
  • Abdellaoui, Lamya
  • Zubair, Muhammd
  • Felten, Markus
  • Vega-Paredes, Miquel
  • Korte-Kerzel, Sandra
  • Lipinska-Chwalek, Marta
  • Hallstedt, Bengt
  • Zander, Daniela
  • Springer, Hauke
  • Berkels, Benjamin
  • Ayeb, Nadia
  • Mayer, Joachim
  • Sotnikov, Andrei
  • Ai, Xin
  • Cichocka, Magdalena O.
  • Lei, Binghua
  • Giebeler, Lars
  • Zhang, Qihao
  • Singh, David J.
OrganizationsLocationPeople

article

Enhancing the Thermoelectric Properties via Modulation of Defects in <i>P</i>‐Type MNiSn‐Based (M = Hf, Zr, Ti) Half‐Heusler Materials

  • Pérez, Nicolás
  • Nielsch, Kornelius
  • Sotnikov, Andrei
  • Ai, Xin
  • Zhang, Siyuan
  • Villoro, Ruben Bueno
  • Cichocka, Magdalena O.
  • Lei, Binghua
  • Giebeler, Lars
  • Zhang, Qihao
  • Scheu, Christina
  • Singh, David J.
Abstract

<jats:title>Abstract</jats:title><jats:p>The thermoelectric figure‐of‐merit (<jats:italic>zT</jats:italic>) of <jats:italic>p</jats:italic>‐type MNiSn (M = Ti, Zr, or Hf) half‐Heusler compounds is lower than their <jats:italic>n</jats:italic>‐type counterparts due to the presence of a donor in‐gap state caused by Ni occupying tetrahedral interstitials. While ZrNiSn and TiNiSn, have been extensively studied, HfNiSn remains unexplored. Herein, this study reports an improved thermoelectric property in <jats:italic>p</jats:italic>‐type HfNi<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Co<jats:italic><jats:sub>x</jats:sub></jats:italic>Sn. By doping 5 at% Co at the Ni sites, the Seebeck coefficient becomes reaching a peak value exceeding 200 µV K<jats:sup>−1</jats:sup> that breaks the record of previous reports. A maximum power factor of ≈2.2 mW m<jats:sup>−1</jats:sup> K<jats:sup>−2</jats:sup> at 973 K is achieved by optimizing the carrier concentration. The enhanced <jats:italic>p</jats:italic>‐type transport is ascribed to the reduced content of Ni defects, supported by first principle calculations and diffraction pattern refinement. Concomitantly, Co doping also softens the lattice and scatters phonons, resulting in a minimum lattice thermal conductivity of ≈1.8 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>. This leads to a peak <jats:italic>zT</jats:italic> of 0.55 at 973 K is realized, surpassing the best performing <jats:italic>p</jats:italic>‐type MNiSn by 100%. This approach offers a new method to manipulate the intrinsic atomic disorder in half‐Heusler materials, facilitating further optimization of their electronic and thermal properties.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • interstitial
  • thermal conductivity
  • thermoelectric property