Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Son, Hae Jung

  • Google
  • 2
  • 9
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Efficient and Scalable Large‐Area Organic Solar Cells by Asymmetric Nonfullerene Acceptors Based on 9H‐Indeno[1,2‐b]pyrazine‐2,3,8‐Tricarbonitrile8citations
  • 2017Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction All-Polymer Solar Cells54citations

Places of action

Chart of shared publication
Um, Duhyeon
1 / 1 shared
Jin, Hyunjung
1 / 1 shared
Rhee, Jinhyeong
1 / 1 shared
Yoon, Seongwon
1 / 1 shared
Jun, Yongseok
1 / 1 shared
Jung, Jae Woong
1 / 4 shared
Ko, Min Jae
1 / 1 shared
Ahn, Hyungju
1 / 3 shared
Jo, Jea Woong
1 / 2 shared
Chart of publication period
2023
2017

Co-Authors (by relevance)

  • Um, Duhyeon
  • Jin, Hyunjung
  • Rhee, Jinhyeong
  • Yoon, Seongwon
  • Jun, Yongseok
  • Jung, Jae Woong
  • Ko, Min Jae
  • Ahn, Hyungju
  • Jo, Jea Woong
OrganizationsLocationPeople

article

Efficient and Scalable Large‐Area Organic Solar Cells by Asymmetric Nonfullerene Acceptors Based on 9H‐Indeno[1,2‐b]pyrazine‐2,3,8‐Tricarbonitrile

  • Um, Duhyeon
  • Jin, Hyunjung
  • Rhee, Jinhyeong
  • Yoon, Seongwon
  • Jun, Yongseok
  • Son, Hae Jung
Abstract

<jats:title>Abstract</jats:title><jats:p>It remains challenging to fabricate efficient, scalable large‐area organic solar cells (OSCs) owing to the unfavorable morphology of photoactive blend films. To address this challenge, two asymmetric nonfullerene acceptors (NFAs) IPC1CN‐BBO‐IC2F and IPC1CN‐BBO‐IC2Cl are synthesized, where 12,13‐bis(2‐butyloctyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐<jats:italic>e</jats:italic>]thieno[2′“,3′”:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐<jats:italic>g</jats:italic>]thieno[2′,3′:4,5]thieno‐[3,2‐<jats:italic>b</jats:italic>]indole (BBO) is the molecular core, and two types of end groups are appended to its ends, namely the 9<jats:italic>H</jats:italic>‐indeno[1,2‐<jats:italic>b</jats:italic>]pyrazine‐2,3,8‐tricarbonitrile (IPC1CN) end group and one of 2‐(5,6‐dihalo‐3‐oxo‐2,3‐dihydro‐1<jats:italic>H</jats:italic>‐inden‐1‐ylidene)malononitrile end groups (IC2F or IC2Cl). These NFAs facilitate effective tuning of light absorption and energy levels, offer high carrier mobilities, and allow for the formation of appropriate morphologies. Note that these benefits apply even to large‐area devices, unlike typical Y6‐based NFAs. In addition, a random copolymer PM6‐PBDBT(55) is synthesized and its energy levels are optimally matched with those of the asymmetric NFAs. The blade‐coated 1 cm<jats:sup>2</jats:sup>‐area OSCs based on PM6‐PBDBT(55):IPC1CN‐BBO‐IC2Cl exhibit a PCE of 14.12%, which is higher than that of PM6‐PBDBT(55)‐IPC1CN‐BBO‐IC2F‐based OSCs. More importantly, the PM6‐PBDBT(55):IPC1CN‐BBO‐IC2Cl‐based large‐area (58.50 cm<jats:sup>2</jats:sup>) modules yield an impressive PCE of 11.28% with a small cell‐to‐module loss in fill factor. These results suggest that a combination of the asymmetric molecular design using the IPC1CN group and the terpolymer strategy will pave a new path for fabricating highly efficient and scalable large‐area OSCs.</jats:p>

Topics
  • impedance spectroscopy
  • random
  • copolymer
  • random copolymer