Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sambeek, Jack Van

  • Google
  • 1
  • 6
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Expanding the Perovskite Periodic Table to Include Chalcogenide Alloys with Tunable Band Gap Spanning 1.5–1.9 eV18citations

Places of action

Chart of shared publication
Lebeau, James M.
1 / 3 shared
Cai, Tao
1 / 1 shared
Xu, Michael
1 / 3 shared
Simonian, Tigran
1 / 2 shared
Ye, Kevin
1 / 3 shared
Nicolosi, Valeria
1 / 40 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lebeau, James M.
  • Cai, Tao
  • Xu, Michael
  • Simonian, Tigran
  • Ye, Kevin
  • Nicolosi, Valeria
OrganizationsLocationPeople

article

Expanding the Perovskite Periodic Table to Include Chalcogenide Alloys with Tunable Band Gap Spanning 1.5–1.9 eV

  • Lebeau, James M.
  • Cai, Tao
  • Xu, Michael
  • Simonian, Tigran
  • Ye, Kevin
  • Sambeek, Jack Van
  • Nicolosi, Valeria
Abstract

<jats:title>Abstract</jats:title><jats:p>Optoelectronic technologies are based on families of semiconductor alloys. It is rare that a new semiconductor alloy family is developed to the point where epitaxial growth is possible; since the 1950s, this has happened approximately once per decade. Herein, this work demonstrates epitaxial thin film growth of semiconducting chalcogenide perovskite alloys in the Ba‐Zr‐S‐Se system by gas‐source molecular beam epitaxy (MBE).  This work stabilizes the full range <jats:italic>y</jats:italic> = 0 − 3 of compositions BaZrS<jats:sub>(3‐y)</jats:sub>Se<jats:sub>y</jats:sub> in the perovskite structure. The resulting films are environmentally stable and the direct band gap (<jats:italic>E</jats:italic><jats:sub>g</jats:sub>) varies strongly with Se content, as predicted by theory, with <jats:italic>E</jats:italic><jats:sub>g</jats:sub> = 1.9 − 1.5 eV for <jats:italic>y</jats:italic> =  0 − 3. This creates possibilities for visible and near‐infrared (VIS–NIR) optoelectronics, solid‐state lighting, and solar cells using chalcogenide perovskites.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • theory
  • thin film
  • semiconductor